Skip to main content
Log in

Proteomic Analysis of Salt Stress Responses in Rice Shoot

  • Original Research
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

To gain a better understanding of the mechanism of rice (Oryza sativa L.) in response to salt stress, we performed a proteomics analysis of rice in response to 250 mM NaCl treatment using shoots of 3-day-old nascent seedlings. The changes of protein patterns were monitored with two-dimensional gel electrophoresis. Of 57 protein spots showing changes in abundance in response to salt stress, 52 were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The identified proteins were classified into eight functional categories. Several novel salt stress-responsive proteins, including protein synthesis inhibitor I, photosystem II stability/assembly factor HCF136, trigger factor-like protein and cycloartenol-C24-methyltransferase are upregulated upon salt stress. In order to figure out the different and similar molecular mechanism among salt and other stresses, regulation of some salt responsive proteins under other abiotic stress (cold and dehydration) and abscisic acid application was also analyzed. The possible molecular mechanism of rice seedlings in response to salinity and other stresses were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ball MC, Chow WS, Anderson JM (1987) Salinity-induced potassium deficiency causes loss of functional photosystem II in leaves of the grey mangrove, Avicennia marina, through depletion of the atrazine-binding polypeptide. Aust J Plant Physiol 14:351–361

    Article  CAS  Google Scholar 

  • Breyne P, Zabeau M (2001) Genome-wide expression analysis of plant cell cycle modulated genes. Curr Opin Plant Biol 4:136–142

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Zhang W, Xie YJ, Lu W, Zhang RX (2007) Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. Plant Sci 173:397–407

    Article  CAS  Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X et al (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9:3100–3114

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng 27:141–177

    Article  CAS  Google Scholar 

  • Endo Y, Tsurugi K (1988) The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem 263:8735–8739

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate response to salinity in barley leaves. J Exp Bot 55:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Groth G, Strotmann H (1999) New results about structure, function and regulation of the chloroplast ATP synthase (CF0CF1). Physiol Plant 106:142–148

    Article  CAS  Google Scholar 

  • He Z, Li L, Luan S (2004) Immunophilins and parvulins superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol 134:1248–1267

    Article  PubMed  CAS  Google Scholar 

  • Health RL, Packer G (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichemtry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Iwasaki Y, Komano M, Ishikawa A, Sasaki T, Asahi T (1995) Molecular cloning and characterization of cDNA for a rice protein that contains seven repetitive segments of the Trp-Asp forty-amino-acid repeat (WD-40 repeat). Plant Cell Physiol 36:505–510

    PubMed  CAS  Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell-death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970

    Article  PubMed  CAS  Google Scholar 

  • Jorrín JV, Maldonado AM, Castillejo MA (2007) Plant proteome analysis: a 2006 update. Proteomics 7:2947–2962

    Article  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K et al (2001) Gene expression profile during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Ledford HK, Baroli I, Shin JW, Fischer BB, Eggen RI, Niyogi KK (2004) Comparative profiling of lipid-soluble antioxidants and transcripts reveals two phases of photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas reinhardtii. Mol Gen Genomics 272:470–479

    Article  CAS  Google Scholar 

  • Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY et al (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166:1–11

    Article  PubMed  CAS  Google Scholar 

  • Li X, Yang M, Chen H, Qu L, Chen F, Shen S (2010) Abscisic acid pretreatment enhances salt tolerance of rice seedlings: proteomic evidence. Biochim Biophys Acta-Proteins and Proteomics 1804:929–940

    Article  CAS  Google Scholar 

  • Ludlam AV, Moore BA, Xu Z (2004) The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. Proc Natl Acad Sci U S A 101:13436–13441

    Article  PubMed  CAS  Google Scholar 

  • Meurer J, Plucken H, Kowallik KV, Westhoff P (1998) A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J 17:5286–5297

    Article  PubMed  CAS  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Van Montagu M, van Der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol 107:177–186

    Article  PubMed  CAS  Google Scholar 

  • Pandit A, Rai V, Bal S, Sinha S, Kumar V, Chauhan M et al (2010) Combining QTL mapping and transcriptome profiling of bulked RILs for identification of functional polymorphism for salt tolerance genes in rice (Oryza sativa L.). Mol Gen Genomics 284:121–136

    Article  CAS  Google Scholar 

  • Pellinen RI, Korhonen MS, Tauriainen AA, Palva ET, Kangasjarvi J (2002) Hydrogen peroxide activates cell death and defense gene expression in birch. Plant Physiol 130:549–560

    Article  PubMed  CAS  Google Scholar 

  • Plucken H, Muller B, Grohmann D, Westhoff P, Eichacker LA (2002) The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett 532:85–90

    Article  PubMed  CAS  Google Scholar 

  • Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y et al (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    Article  PubMed  CAS  Google Scholar 

  • Riccardi F, Gazeau P, de Vienne D, Zivy M (1998) Protein changes in response to progressive water deficit in maize. Plant Physiol 117:1253–1263

    Article  PubMed  CAS  Google Scholar 

  • Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ (2011) Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC Plant Biol 11:34–48

    Article  PubMed  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Res 76:199–219

    Article  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P et al (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T et al (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291

    Article  PubMed  CAS  Google Scholar 

  • Shen S, Jing Y, Kuang T (2003a) Proteomics approach to identify wound-response related proteins from rice leaf sheath. Proteomics 3:527–535

    Article  PubMed  CAS  Google Scholar 

  • Shen S, Sharma A, Komatsu S (2003b) Characterization of proteins responsive to gibberellin in the leaf-sheath of rice (Oryza sativa L.) seedling using proteome analysis. Biol Pharm Bull 26:129–136

    Article  PubMed  CAS  Google Scholar 

  • Sitbon F, Jonsson L (2001) Sterol composition and growth of transgenic tobacco plants expressing type-1 and type-2 sterol methyltransferases. Planta 212:568–572

    Article  PubMed  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Gorini P, Valbonesi P, Bolognesi A, Polito L (1996) Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stressed leaves. FEBS Lett 382:309–312

    Article  PubMed  CAS  Google Scholar 

  • Sun SJ, Guo SQ, Yang X, Bao YM, Tang HJ, Sun H et al (2010) Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. J Exp Bot 61:2807–2818

    Article  PubMed  CAS  Google Scholar 

  • Veena RVS, Sopory SK (1999) Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress. Plant J 17:385–395

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Xiong LM, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell Supplement 14:165–183

    Google Scholar 

  • Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244

    Article  PubMed  CAS  Google Scholar 

  • Yan S, Zhang Q, Tang Z, Su W, Sun W (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    PubMed  CAS  Google Scholar 

  • Yang G, Komatsu S (2004) Microarray and proteomic analysis of brassinosteroid- and gibberellin-regulated gene and protein expression in rice. Geno Prot Bioinfo 2:77–83

    CAS  Google Scholar 

  • Zang X, Komatsu S (2007) A proteomics approach for identifying osmotic-stress-related proteins in rice. Phytochemistry 68:426–437

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Genetically Modified Organisms Breeding Major Projects (2009ZX08009-074B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hua Shen.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

Comparison of the proteome patterns of the 3-day-old rice seedlings after treatments of 48 h: A, B, and C represent the maps of ABA, drought, and cold treatment, respectively. Differentially regulated protein spots in every treatment are circled and indicated by arrows (DOC 13,091 kb)

Table S1

Regulation of salt responsive proteins under different treatments (DOC 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, XJ., Yang, MF., Zhu, Y. et al. Proteomic Analysis of Salt Stress Responses in Rice Shoot. J. Plant Biol. 54, 384–395 (2011). https://doi.org/10.1007/s12374-011-9173-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-011-9173-8

Keywords

Navigation