Skip to main content
Log in

Conserved Sequences of Replicase Gene-Mediated Resistance to Potyvirus through RNA Silencing

  • Original Research
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Nuclear inclusion protein b (NIb) genes of three Potato virus Y isolates PVY-SD1 (O strain), PVY-SD4 (N strain), PVY-SD5 (NTN strain), and Tobacco etch virus isolate TEV-SD1 in Shandong Province were cloned and sequenced. Sequence analysis showed that the sequence homology of the entire NIb gene among the four viruses ranged from 65% to 95%. Hairpin RNA (hpRNA) constructs were designed based on five conserved regions derived from PVY-SD1 and introduced into tobacco plants. After asexual propagation, the transgenic plants were analyzed for resistance to PVY-SD1, PVY-SD4, PVY-SD5, and TEV-SD1. We obtained resistance ratios of 26.2%, 22.7%, 36.4%, 20.3%, and 21.7% to PVY-SD1. When inoculated with the PVY-SD5 virus, the transgenic plants had resistance ratios ranging from 2.4% to 15.9%, but no resistance at all to the other viruses, PVY-SD4 and TEV-SD1. No correlation was found between resistance of transgenic plants and the transgene copy numbers. Northern blot and small interfering RNA (siRNA) analysis demonstrated that the resistance was attributable to RNA silencing. Genetic analysis demonstrated that virus resistance was stably inherited in progeny T1 and T2. These results indicate that the siRNA molecules against conserved regions can confer virus resistance but are restricted to viruses with more than 90% sequence homology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel PP, Nelson RS, Hoffmann N, De B, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  CAS  PubMed  Google Scholar 

  • Amarzguioui M, Prydz H (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058

    Article  CAS  PubMed  Google Scholar 

  • Balmori-Melian E, MacDiarmid RM, Beck DL, Gardner RC, Forster RLS (2002) Sequence-, tissue-, and delivery-specific targeting of RNA during post-transcriptional gene silencing. Mol Plant-Microbe Interact 15:753–763

    Article  CAS  PubMed  Google Scholar 

  • Bau HJ, Cheng YH, Yu TA, Yang JS, Yeh SD (2003) Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93:112–120

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe DC (2002) RNA silencing. Curr Biol 12:R82–R84

    Article  CAS  PubMed  Google Scholar 

  • Beachy RN (1997) Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr Opin Biotech 8:215–220

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bucher E, Lohuis D, Pieter M, van Poppel JA, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    Article  CAS  PubMed  Google Scholar 

  • Carr JP, Gal-On A, Palukaitis P, Zaitlin M (1994) Replicase-mediated resistance to cucumber mosaic virus in transgenic plants involves suppression of both virus replication in the inoculated leaves and long-distance movement. Virology 199:439–447

    Article  CAS  PubMed  Google Scholar 

  • Dougherty WG, Parks TD (1995) Transgenes and gene suppression: telling us something new? Curr Op Cell Biol 7:399–405

    Article  CAS  PubMed  Google Scholar 

  • Dougherty WG, Lindbo JA, Smith HA, Parks TD, Swaney S, Proebsting WM (1994) RNA-mediated resistance in transgenic plants: exploitation of a cellular pathway possibly involved in RNA degradation. Mol Plant-Microbe Interact 7:544–552

    CAS  PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Gene De 15:188–200

    Article  CAS  Google Scholar 

  • Fuchs M, McFerson JR, Tricoli DM, McMaster JR, Deng RZ, Boeshore ML, Reynolds JF, Russell PF, Quemada HD, Gonsalves D (1997) Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus, and watermelon mosaic virus-2 is resistance to these three virus in the field. Mol Breed 3:279–290

    Article  Google Scholar 

  • Glais L, Tribodet M, Kerlan C (2002) Genomic variability in Potato potyvirus Y (PVY): evidence that PVYNW and PVYNTN variants are single to multiple recombinants between PVYO and PVYN isolates. Arch Viroy 147:363–378

    Article  CAS  Google Scholar 

  • Golemboski D, Lomonossoff GP, Zaitlin M (1990) Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc Natl Acad Sci 87:6311–6315

    Article  CAS  PubMed  Google Scholar 

  • Gredell JA, Berger AK, Walton SP (2008) Impact of target mRNA structure on siRNA silencing efficiency: a large-scale study. Biotechnol Bioeng 100:744–755

    Article  CAS  PubMed  Google Scholar 

  • Guo XQ, Liu SE, Zhu CX, Song YZ, Meng XB, Zheng CC, Wen FJ (2001) RNA mediated viral resistance against Potato virus Y (PVY) in transgenic tobacco plants. Acta Phytopathol Sin 31:349–356

    Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  CAS  PubMed  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295

    Article  CAS  PubMed  Google Scholar 

  • Hohjoh H (2004) Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett 557:193–198

    Article  CAS  PubMed  Google Scholar 

  • Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res 30:1757–1766

    Article  CAS  PubMed  Google Scholar 

  • Jan FJ, Fagoaga C, Pang SZ, Gonsalves D (2000) A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J Gen Virol 81:2103–2109

    CAS  PubMed  Google Scholar 

  • Jones AL, Johansen IE, Bean SJ, Bach I, Maule AJ (1998) Specificity of resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase(Nlb) gene. J Gen Virol 79:3129–3137

    CAS  PubMed  Google Scholar 

  • Kamer G, Argos P (1984) Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acid Res 12:7269–7282

    Article  CAS  PubMed  Google Scholar 

  • Kaniewsli W, Lawson C, Sammoms B, Haley L, Hart J, Delannay X, Tumer NE (1990) Field resistance of transgenic Russet Burbank potato to effects of infection by potato virus X and potato virus Y. Bio-Technology 8:750–754

    Google Scholar 

  • Kouassi NK, Chen L, Sire C, Bangratz-Reyser M, Beachy RN, Fauquet CM, Brugidou C (2006) Expression of rice yellow mottle virus coat protein enhances virus infection in transgenic plants. Arch Virol 151:2111–2122

    Article  CAS  PubMed  Google Scholar 

  • Krubphachaya P, Jurícek M, Kertbundit S (2007) Induction of RNA-mediated resistance to papaya ringspot virus type W. J Biochem Mol Biol 40:404–411

    CAS  PubMed  Google Scholar 

  • Li P, Song YZ, Liu XL, Zhu CX, Wen FJ (2007) Study of virus resistance mediated by inverted repeats derive from 5′and 3′ends of coat protein gene of Potato virus Y. Acta Phytopathol Sin 37:69–72

    Google Scholar 

  • Liao JY, Yin JQ, Chen F, Liu TG, Yue JC (2008) A study on the fundamental factors determining the efficacy of siRNAs with high C/G contents. Cell Mol Biol Lett 13:283–302

    Article  CAS  PubMed  Google Scholar 

  • Lindbo JA, Dougherty WG (1992) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–733

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Chen W, Ni Z, Yan W, Fei L, Jiao Y, Zhang J, Du Q, Wei X, Chen J, Liu Y, Zheng Z (2005) Cross-inhibition to heterologous foot-and-mouth disease virus infection induced by RNA interference targeting the conserved regions of viral genome. Virology 336:51–59

    Article  CAS  PubMed  Google Scholar 

  • Lomonossoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev of Phytopathol 33:323–343

    Article  CAS  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nature Rev Genet 3:737–747

    Article  CAS  PubMed  Google Scholar 

  • Molnár A, Csorba T, Lakatos L, Várallyay E, Lacomme C, Burgyán J (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J Virol 79:7812–7818

    Article  PubMed  Google Scholar 

  • Moreno M, Bernal JJ, Jimenez I, Rodriguez-Cerezo E (1998) Resistance in plants transformed with the P1 or P3 gene of tobacco vein mottling potyvirus. J Gen Virol 79:2819–2827

    CAS  PubMed  Google Scholar 

  • Mueller E, Gilbert J, Davenport G, Brigneti G, Baulcombe DC (1995) Homology-dependent resistance: Transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J 7:1001–1013

    Article  CAS  Google Scholar 

  • Nomura K, Ohshima K, Anai T, Uekusa H, Kita N (2004) RNA silencing of the introduced coat protein gene of turnip mosaic virus confers broad-spectrum resistance in transgenic arabidopsis. Phytopathology 94:730–736

    Article  CAS  PubMed  Google Scholar 

  • Nykänen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  PubMed  Google Scholar 

  • O’Brien L (2007) Inhibition of multiple strains of Venezuelan equine encephalitis virus by a pool of four short interfering RNAs. Antivir Res 75:20–29

    Article  PubMed  Google Scholar 

  • Poch O, Sauvagey L, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874

    CAS  PubMed  Google Scholar 

  • Prins M, de Haan P, Luyten R, Van Veller M, Van Grinsven MQ, Goldbach R (1995) Broad resistance to tospoviruses in transgenic tobacco plants expressing three tospoviral nucleoprotein sequence. Mol Plant-Microbe Interact 8:85–91

    CAS  PubMed  Google Scholar 

  • Pusch O, Boden D, Silbermann R, Lee F, Tucker L, Ramratnam B (2003) Nucleotide sequence homology requirements of HIV-1-specific short hairpin RNA. Nucleic Acids Res 31:6444–6449

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fristsch EF, Maniatis T (1992) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanford JC, Johnson SA (1985) The concept of parasite-derived resistance: deriving resistance genes from the parasite own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Sonoda S, Mori M, Nishiguchi M (1999) Homology-dependent virus resistance in transgenic plants with the coat protein gene of sweet potato feathery mottle potyvirus: target specificity and transgene methylation. Phytopathology 89:385–391

    Article  CAS  PubMed  Google Scholar 

  • Westerhout EM, Berkhout B (2007) A systematic analysis of the effect of target RNA structure on RNA interference. Nucleic Acids Res 35:4322–4330

    Article  CAS  PubMed  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  CAS  PubMed  Google Scholar 

  • Zhou XP, Li DB (2000) Genetically engineering resistance to viruses and environmental risk assessment of release of transgenic plants. Chinese Bull Sci 12:4–6

    Google Scholar 

  • Zhu JH, Zhu CX, Wen FJ, Song YZ (2004) Comparison of resistance to Potato virus Y mediated by direct and inverted repeats of the Coat protein gene segments in transgenic tobacco plants. Acta Phytopathol Sin 34:133–140

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 30771408 and 30500327).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChangXiang Zhu or FuJiang Wen.

Additional information

Li Xu and YunZhi Song have equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Song, Y., Zhu, J. et al. Conserved Sequences of Replicase Gene-Mediated Resistance to Potyvirus through RNA Silencing. J. Plant Biol. 52, 550–559 (2009). https://doi.org/10.1007/s12374-009-9071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-009-9071-5

Keywords

Navigation