Skip to main content
Log in

Emerging Complexity of Ethylene Signal Transduction

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

The plant hormone ethylene modulates growth and development and mediates diverse stresses and pathogens. Genetic studies with a laboratory reference plant, Arabidopsis, enabled researchers first to identify and place several key signaling components in a linear pathway for hormone signaling. Biochemical and cellular investigations have now led us to integrate functionally these genetically identified factors within a signaling context. Multi-step regulation of protein stability that accompanies phosphorylation/de-phosphorylation appears to be a central and underlying molecular mechanism. Here, we briefly summarize recent findings in such post-translational regulation of ethylene signaling factors. Based on this, we can postulate a new framework and formulate specific questions to unravel the emerging dynamics and complexity of ethylene signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit JME (1992) Ethylene in plant biology, 2nd edn. Academic, San Diego

    Google Scholar 

  • Alonso JM, Stepanova AN (2004) The ethylene signaling pathway. Science 306:1513–1515

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100:2992–2997

    Article  PubMed  CAS  Google Scholar 

  • Bhoj VG, Chen ZJ (2009) Ubiquitylation in innate and adaptive immunity. Nature 458:430–437

    Article  PubMed  CAS  Google Scholar 

  • Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstra RD (2007) The Arabidopsis EIN3 binding F-Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell 19:509–523

    Article  PubMed  CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitive to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene response gene ETR1: similarity of product to two component regulators. Science 262:539–544

    Article  PubMed  CAS  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein Ethylene-Insensitive3 and related proteins. Cell 89:1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-F, Shakeel SN, Bowers J, Zhao XC, Etheridge N, Schaller GE (2007) Ligand-induced degradation of the ethylene receptor ETR2 through a proteasome-dependent pathway in Arabidopsis. J Biol Chem 282:24752–24758

    Article  PubMed  CAS  Google Scholar 

  • Clark KL, Larsen PB, Wang X, Chang C (1998) Association of the Arabidopsis CTR1 raf-like kinase with the ETR1 and ERS ethylene receptors. Proc Natl Acad Sci USA 95:5401–5406

    Article  PubMed  CAS  Google Scholar 

  • Deruère J, Jackson K, Garbers C, Söll D, Delong A (1999) The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo. Plant J 20:389–399

    Article  PubMed  Google Scholar 

  • Dong CH, Rivarola M, Resnick JS, Maggin BD, Chang C (2008) Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J 53:275–286

    Article  PubMed  CAS  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra R (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101:6803–6808

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Young TE (2004) The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 271:267–281

    Article  PubMed  CAS  Google Scholar 

  • Gregory BD, O'Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14:854–866

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene sensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor family in Arabidopsis. Plant Cell 10:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    Article  PubMed  CAS  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    Article  PubMed  CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Kim WT, Kang BG, Yang SF (1997) Induction of 1-aminocyclopropane-1-carboxylate oxidase mRNA by ethylene in mung bean hypocotyls: involvement of both protein phosphorylation and dephosphorylation in ethylene signaling. Plant J 11:399–405

    Article  CAS  Google Scholar 

  • Klee HJ (2004) Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol 135:660–667

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Yanagisawa S (2008) Arabidopsis ethylene signaling involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J 55:821–831

    Article  PubMed  CAS  Google Scholar 

  • Kwak SH, Lee SH (1997) The requirements for Ca2+, protein phosphorylation, and dephosphorylation for ethylene signal transduction in Pisum sativum L. Plant Cell Physiol 38:1142–1149

    PubMed  CAS  Google Scholar 

  • Larsen PB, Cancel JD (2003) Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a loss-of-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1. Plant J 34:709–718

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Chang C (2001) The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem. Plant Physiol 125:1061–1073

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Deng XW, Kim WT (2006) Possible role of light in the maintenance of EIN3/EIL1 in Arabidopsis seedlings. Biochem Biophys Res Commun 350:484–491

    Article  PubMed  CAS  Google Scholar 

  • Li H, Wong WS, Zhu L, Guo HW, Ecker J, Li N (2009) Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsis mutant ein2 using two-dimensional separations coupled with a hybrid quadrupole time-of-flight mass spectrometer. Proteomics 9:1–16

    Article  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  PubMed  CAS  Google Scholar 

  • Novikova GV, Moshkov IE, Smith AR, Hall MA (2000) The effect of ethylene on MAP Kinase-like activity in Arabidopsis thaliana. FEBS 474:29–32

    Article  CAS  Google Scholar 

  • Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman P, Ecker JR (2006) ETHYLENE-INSENSITIVE5 encodes a 5′→3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci USA 103:13286–13293

    Article  CAS  Google Scholar 

  • O'Malley RC, Rodriguez FI, Esch JJ, Binder BM, O'Donnell P, Klee HJ, Bleecker AB (2005) Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J 41:651–659

    Article  PubMed  Google Scholar 

  • Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22:1282–1288

    Article  PubMed  CAS  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, Koncz C, Genschik P (2003) EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679–689

    Article  PubMed  CAS  Google Scholar 

  • Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Gene Dev 23:512–521

    Article  PubMed  CAS  Google Scholar 

  • Raz V, Fluhr R (1993) Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5:523–530

    Article  PubMed  CAS  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103:7917–7922

    Article  PubMed  CAS  Google Scholar 

  • Sakai HM, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817

    Article  PubMed  CAS  Google Scholar 

  • Schaller GE, Kieber JJ (2002) Ethylene. In: Somerville C, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD, USA. doi:101199/tab.0071

    Google Scholar 

  • Schwartz MA, Madhani HD (2004) Principles of MAPK kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 38:725–748

    Article  PubMed  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Li H, Ecker J (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14(suppl):S131–S151

    PubMed  CAS  Google Scholar 

  • Wang W, Esch JJ, Shiu SH, Agula H, Binder BM, Chang C, Patterson SE, Bleecker AB (2006) Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 18:3429–3442

    Article  PubMed  CAS  Google Scholar 

  • Wullaerdt A, Heynick K, Janssens S, Beyaert R (2006) Ubiquitin: tool and target for intracellular NF-kB inhibitors. Trends Immunol 27:533–540

    Article  Google Scholar 

  • Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008) Activation of MAPK kinase9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283:26996–27006

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2008) Dual control of nuclear EIN3 by bifurcated MAPK cascades in C2H4 signalling. Nature 451:789–795

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2009) Emerging connections in the ethylene signaling network. Trends Plant Sci 14(5):270–279

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Lin Z, Grierson D (2008) Tomato ethylene receptor-CTR1 interactions: visualization of NEVER-RIPE interactions with multiple CTRs at the endoplasmic reticulum. J Exp Bot 59:965–972

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Liu Q, Xie F, Wen CK (2007) RTE1 is a Golgi-associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiol 145:75–86

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to the researchers whose works could not be cited here because of space constraints. We thank Jen Sheen for supporting us over our post-doctoral researches and sharing information. This work was supported by KOSEF (2009-0075514 and 2009-0068557) and the promotion program for new faculty, Sungkyunkwan University (2008-0843-000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Dong Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, YH., Yoo, SD. Emerging Complexity of Ethylene Signal Transduction. J. Plant Biol. 52, 283–288 (2009). https://doi.org/10.1007/s12374-009-9038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-009-9038-6

Keywords

Navigation