Skip to main content
Log in

Effects of Brassinolide and IAA on Ethylene Production and Elongation in Maize Primary Roots

  • Original Research
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

We examined the effects of brassinolide (BL) and/or an auxin (indole-3-acetic acid) on ethylene production and elongation in the primary roots of maize (Zea mays). When these two hormones were applied exogenously, both increased ethylene production. Before the tenth hour after treatment began, the influence of IAA was more evident than that of BL; the reverse was found beyond 10 h. When these hormones were treated simultaneously, the increase in level of ethylene was greater than the sum of effects by each hormone. Such a positive interaction was also recorded for changes in the activity of ACC synthase and the expression of its gene. For ACC oxidase, however, the two hormones had no apparent influence. When applied separately, neither affected root elongation nor proton extrusion. However, when given in combination, both phenomena occurred. Our results suggest that BL interacts with IAA to promote ethylene biosynthesis and elongation in roots. Therefore, it is possible that brassinolide acts by inducing auxin, which then stimulates both ethylene production (at the early stage) and root development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

1-aminocycloporpane-1-carboxylic acid

AdoMet:

S-adenosylmethionine

IAA:

indole-3-acetic acid

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in Plant Biology, 2nd edn. Academic, San Diego

    Google Scholar 

  • Altman T (1999) Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208:1–11

    Article  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631

    Article  PubMed  CAS  Google Scholar 

  • Chang SC, Kim YS, Lee JY, Kaufman PB, Kirakosyan A, Yun HS, Kim T-W, Kim SY, Cho MH, Lee JS, Kim S-K (2004) Brassinolide interacts with auxin and ethylene in the root gravitropic response of maize (Zea mays). Physiol Plant 121:666–673

    Article  CAS  Google Scholar 

  • Choe S (2007) Signal-transduction pathways toward the regulation of brassinosteroid biosynthesis. J Plant Biol 50:225–229

    Article  CAS  Google Scholar 

  • De Paepe A, Van der Straeten D (2005) Ethylene biosynthesis and signaling: an overview. Vitam Horm 72:399–430

    Article  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  PubMed  CAS  Google Scholar 

  • Fujii S, Hirai K, Saka H (1991) Growth-regulating action of brassinolide in rice plant. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids, chemistry, bioactivity, and application. ACS symposium series, vol 474. American Chemical Society, Washington DC, pp 306–311

    Google Scholar 

  • Fujioka S, Noguchi T, Takatsuto S, Yoshida S (1998) Activity of brassinosteroids in the dwarf rice lamina inclination bioassay. Phytochem 49:1841–1848

    Article  CAS  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334

    Article  PubMed  CAS  Google Scholar 

  • Grove MD, Spencer FG, Rohwededer WK, Mandava NB, Worley JF, Warthen JD Jr, Steffens GL, Flippen-Anderson JL, Cook JC Jr (1979) Brassinolide, a plant growth hormone promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  PubMed  CAS  Google Scholar 

  • Holliday KJ (2004) Plant hormones: the interplay of brassinosteroids and auxin. Curr Biol 14:R1008–R1010

    Article  Google Scholar 

  • Joo S, Kim WT (2007) A gaseous hormone ethylene: the signaling pathway. J Plant Biol 50:109–116

    Article  CAS  Google Scholar 

  • Kelly M, Bradford KJ (1986) Sensitivity of the diageotropica tomato mutant to auxin. Plant Physiol 82:713–717

    Article  PubMed  CAS  Google Scholar 

  • Kim S-K, Abe H, Little CHA, Pharis RP (1990) Identification of two brassinosteroids from cambial region of Scots pine (Pinus sylvestris) by gas chromatography-mass spectrometry, after detection using a dwarf rice lamina inclination bioassay. Plant Physiol 94:1709–1713

    Article  PubMed  CAS  Google Scholar 

  • Kim S-K, Chang SC, Lee EJ, Chung W-S, Kim Y-S, Hwang S, Lee JS (2000) Involvement of brassinosteroids in the gravitropic response of primary root of maize. Plant Physiol 123:997–1004

    Article  PubMed  CAS  Google Scholar 

  • Kim SY, Mulkey TJ (1997a) Effect of ethylene antagonists on auxin-induced of intact primary root elongation in maize (Zea mays L.). J Plant Biol 40:256–260

    Article  CAS  Google Scholar 

  • Kim SY, Mulkey TJ (1997b) Effect of auxin and ethylene on elongation of intact primary roots of maize (Zea mays L.). J Plant Biol 40:249–255

    Article  CAS  Google Scholar 

  • Kim T-W, Lee SM, Joo S-H, Yun HS, Lee Y, Kaufman PB, Kirakosyan A, Kim S-H, Nam KH, Lee JS, Chang SC, Kim S-K (2007) Elongation and gravitropic response of Arabidopsis roots are regulated by brassinolide and IAA. Plant Cell Environ 30:679–689

    Article  PubMed  CAS  Google Scholar 

  • Leyser O (2006) Dynamic integration of auxin transport and signaling. Curr Biol 16:R424–R433

    Article  PubMed  CAS  Google Scholar 

  • Li J, Chory J (1999) Brassinosteroid actions in plants. J Exp Bot 50:332–340

    Article  Google Scholar 

  • Li L, Xu J, Xu ZH, Xue HW (2005) Brassinosteroids stimulate plant tropisms through modulation of polar auxin transport in Brassica and Arabidopsis. Plant Cell 17:2738–2753

    Article  PubMed  CAS  Google Scholar 

  • Lim SH, Chang SC, Lee JS, Kim S-K, Kim SY (2002) Brassinosteroids affects ethylene production in the primary roots of maize (Zea mays L.). J Plant Biol 45:148–153

    Article  CAS  Google Scholar 

  • Lizada C, Yang SF (1979) A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Ann Biochem 100:140–145

    Article  CAS  Google Scholar 

  • Mandava BN (1988) Plant growth promoting brassinosteroids. Annu Rev Plant Physiol Plant Mol Biol 39:23–52

    Article  CAS  Google Scholar 

  • McSteen P, Zhao Y (2008) Plant hormones and signaling: common themes and new developments. Dev Cell 14:467–473

    Article  PubMed  CAS  Google Scholar 

  • Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443:458–461

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol 2:E258

    Article  PubMed  Google Scholar 

  • Sakurai A, Fujioka S (1993) The current status of physiology and biochemistry of brassinosteroids. Plant Growth Regul 13:147–159

    Article  CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  • Sasse JM (1999) Physiological actions of brassinosteroids. In: Sakurai A, Yokota T, Clouse SD (eds) Brassinosteroids: steroidal plant hormone. Springer, Tokyo, pp 306–311

    Google Scholar 

  • Sieberer T, Leyser O (2006) Auxin transport, but in which direction? Science 312:858–860

    Article  PubMed  CAS  Google Scholar 

  • Stepanova AN, Yun J, Likhacheva AV, Alonso JM (2007) Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19:2169–2185

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Walcher CL, Chory J, Nemhauser JL (2008) Integration of auxin and brassinosteroid pathways by auxin response factor 2. Proc Natl Acad Sci U S A 105:9829–9834

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Woodson WR (1989) Reversible inhibition of ethylene action and interruption of petal senescence on carnation flowers by norbornadiene. Plant Physiol 89:434–438

    Article  PubMed  CAS  Google Scholar 

  • Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119:521–529

    Article  PubMed  CAS  Google Scholar 

  • Yokota T (1997) The structure, biosynthesis and function of brassinosteroids. Trends Plant Sci 2:137–143

    Article  Google Scholar 

  • Zarembinski TI, Theologis A (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant to SYK from the 2008 Research Fund of Andong National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo Chul Chang or Soon Young Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, H.R., Joo, SH., Park, C.H. et al. Effects of Brassinolide and IAA on Ethylene Production and Elongation in Maize Primary Roots. J. Plant Biol. 52, 268–274 (2009). https://doi.org/10.1007/s12374-009-9032-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-009-9032-z

Keywords

Navigation