Skip to main content
Log in

Biochemistry of Nectar Proteins

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Ahmad S, Pritsos C, Bowen S, Heisler C, Blomquist G, Pardini R (1988) Antioxidant enzymes of larvae of the cabbage looper moth, Trichoplusia ni: subcellular distribution and activities of superoxide dismutase, catalase and glutathione reductase. Free Radic Res Commun 4:403–408

    Article  PubMed  CAS  Google Scholar 

  2. Ankri S, Mirelman D (1999) Antimicrobial properties of allicin from garlic. Microbes Infect 1(2):125–129

    Article  PubMed  CAS  Google Scholar 

  3. Ankri S, Miron T, Rabinkov A, Wilchek M, Mirelman D (1997) Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica. Antimicrob Agents Chemother 41(10):2286–2288

    PubMed  CAS  Google Scholar 

  4. Beard M, Holtzman E (1987) Peroxisomes in wild-type and rosy mutant Drosophila melanogaster. Proc Natl Acad Sci U S A 84:7433–7437

    Article  PubMed  CAS  Google Scholar 

  5. Bubán T, Orosz-Kovács Z, Farkas Á (2003) The nectary is the primary site of infection by Erwinia amylovora (Burr.) Plant Syst Evol 238:183–194

    Google Scholar 

  6. Carter C, Graham R, Thornburg RW (1998) Arabidopsis thaliana contains a large family of germin-like proteins: characterization of cDNA and genomic sequences encoding 12 unique family members. Plant Mol Biol 38:929–943

    Article  PubMed  CAS  Google Scholar 

  7. Carter C, Graham R, Thornburg RW (1999) Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Mol Biol 41:207–216

    Article  PubMed  CAS  Google Scholar 

  8. Carter C, Healy R, O’Tool NM, Naqvi SMS, Ren G, Park S, Beattie GA, Horner HT, Thornburg RW (2007) Tobacco nectaries express a novel NADPH oxidase that is implicated in the defense of floral reproductive tissues against microorganisms. Plant Physiol 143:389–399

    Article  PubMed  CAS  Google Scholar 

  9. Carter C, Thornburg RW (1999) Germin-like proteins: structure, phylogeny and function. J Plant Biol 42:97–108

    Article  CAS  Google Scholar 

  10. Carter C, Thornburg RW (2000) Tobacco Nectarin I: purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem 275:36726–36733

    Article  PubMed  CAS  Google Scholar 

  11. Carter C, Thornburg RW (2003) The nectary-specific pattern of gene expression is regulated by multiple promoter elements in the tobacco Nectarin I promoter. Plant Mol Biol 51:451–457

    Article  PubMed  CAS  Google Scholar 

  12. Carter C, Thornburg RW (2004a) Tobacco Nectarin III is a bifunctional enzyme with monodehydroascorbate reductase and carbonic anhydrase activities. Plant Mol Biol 54:415–425

    Article  PubMed  CAS  Google Scholar 

  13. Carter C, Thornburg RW (2004b) Tobacco Nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiol 134:460–469

    Article  PubMed  CAS  Google Scholar 

  14. Conlan RS, Griffiths LA, Napier JA, Shewry PR, Mantell S, Ainsworth C (1995) Isolation and characterization of cDNA clones representing the genes encoding the major tuber storage protein (dioscorin) of yam (Dioscorea cayenensis Lam.). Plant Mol Biol 28(3):369–380

    Article  PubMed  CAS  Google Scholar 

  15. de Azeredo-Oliveira M, Mello M (1998) Peroxidase activity in Malpighian tubules of Triatoma infestans Klug. Cytobios 93:83–92

    PubMed  Google Scholar 

  16. Dittrich H, Kutchan TM (1991) Molecular cloning, expression and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc Natl Acad Sci U S A 88:9969–9973

    Article  PubMed  CAS  Google Scholar 

  17. Domon J-M, Dumas B, Lainé E, Meyer Y, Alain D, David H (1995) Three glycosylated polypeptides secreted by several embryogenic cell cultures of pine show highly specific serological affinity to antibodies directed against the wheat germin apoprotein monomer. Plant Physiol 108:141–148

    Article  PubMed  CAS  Google Scholar 

  18. Felton G, Summers C (1995) Antioxidant systems in insects. Arch Insect Biochem Physiol 29:187–197

    Article  PubMed  CAS  Google Scholar 

  19. Gane PJ, Dunwell JM, Warwicker J (1998) Modeling based on the structure of vicilins predicts a histidine cluster in the active site of oxalate oxidase. J Mol Evol 46:488–493

    Article  PubMed  CAS  Google Scholar 

  20. Hilder V, Powell K, Gatehouse A, Gatehouse J, Gatehouse L, Shi Y, Hamilton W, Merryweather A, Newell C, Timans J, Peumans J, van Damme E, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res 4:18–25

    Article  CAS  Google Scholar 

  21. Hou W, Chen H, Lin Y (1999) Dioscorins, the major tuber storage proteins of yam (Dioscorea batatas Decne), with dehydroascorbate reductase and monodehydroascorbate reductase activities. Plant Sci 149:151–156

    Article  CAS  Google Scholar 

  22. Hou W, Liu J, Chen H, Chen T, Chang C, Lin Y (1999) Dioscorin, the major tuber storage protein of yam (Dioscorea batatas Decne) with carbonic anhydrase and trypsin inhibitor activities. J Agric Food Chem 5:2168–2172

    Article  Google Scholar 

  23. Hou W, Lee MH, Chen H, Liang W, Han CH, Liu YW, Lin YH (2001) Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber. J Agric Food Chem 49(10):4956–4960

    Article  PubMed  CAS  Google Scholar 

  24. Keele BJ, McCord J, Fridovich I (1970) Superoxide dismutase from Escherichia coli B. A new manganese-containing enzyme. J Biol Chem 245:6176–6181

    PubMed  CAS  Google Scholar 

  25. Klich MA (1990) The degree of susceptibility of nectary-inoculated cotton flowers and bolls to subsequent seed infection by Aspergillus flavus is determined at or before anthesis. Appl Environ Microbiol 56(8):2499–2502

    PubMed  CAS  Google Scholar 

  26. Klich MA, Thomas SH, Mellon JE (1984) Field studies on the mode of entry of Aspergillus flavus into cotton seeds. Mycologia 76:665–669

    Article  Google Scholar 

  27. Kuettner EB, Hilgenfeld R, Weiss MS (2002) The active principle of garlic at atomic resolution. J Biol Chem 277(48):46402–46407

    Article  PubMed  CAS  Google Scholar 

  28. Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein marker of early plant development is an oxalate oxidase. J Biol Chem 268(17):12239–12242

    PubMed  CAS  Google Scholar 

  29. Lane BG, Grzelczak ZF, Kennedy TD, Kajiola R, Orr J, D’Agostino S, Jaikaran A (1986) Germin: compartmentation of two forms of the protein by washing growing wheat embryos. Biochem Cell Biol 64:1025–1037

    Article  CAS  Google Scholar 

  30. Nicolson S, Thornburg RW (2007) Nectar chemistry. In: Pacini E, Nepi M, Nicolson S (eds) Nectary and nectar: a modern treatise. Springer, Amsterdam, pp 215–263

    Chapter  Google Scholar 

  31. Oberg KA, Ruysschaert JM, Azarkan M, Smolders N, Zerhouni S, Wintjens R, Amrani A, Looze Y (1998) Papaya glutamine cyclase, a plant enzyme highly resistant to proteolysis, adopts an all-beta conformation. Eur J Biochem 258(1):214–222

    Article  PubMed  CAS  Google Scholar 

  32. Perez-Giraldo C, Cruz-Villalon G, Sanchez-Silos R, Martinez-Rubio R, Blanco MT, Gomez-Garcia AC (2003) In vitro activity of allicin against Staphylococcus epidermidis and influence of subinhibitory concentrations on biofilm formation. J Appl Microbiol 95(4):709–711

    Article  PubMed  CAS  Google Scholar 

  33. Peumans WJ, Smeets K, van Nerum K, van Leuven F, van Damme EJM (1997) Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta 201:298–302

    Article  PubMed  CAS  Google Scholar 

  34. Powell AL, van Kan J, ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe Interact 13(9):942–950

    Article  PubMed  CAS  Google Scholar 

  35. Powell K, Gatehouse A, Hilder V, van Damme E, Peumans W, Boonjawat J, Horsham K, Gatehouse J (1995) Different antimetabolic effects of related lectins towards nymphal stages of Nilaparvata lugens. Entomol Exp Appl 75:61–65

    Article  CAS  Google Scholar 

  36. Prince RC, Gunson DE (1987) Superoxide production in neutrophils. Trends Biochem Sci 12:86–87

    Article  CAS  Google Scholar 

  37. Rabhé Y, Sauvion N, Febvay G, Peumans W, Gatehouse A (1995) Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 76:143–155

    Article  Google Scholar 

  38. Schilling S, Manhart S, Hoffmann T, Ludwig HH, Wasternack C, Demuth HU (2003) Substrate specificity of glutaminyl cyclases from plants and animals. Biol Chem 384(12):1583–1592

    Article  PubMed  CAS  Google Scholar 

  39. Steinman H, Naik V, Abernethy J, Hill R (1974) Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. J Biol Chem 249:7326–7338

    PubMed  CAS  Google Scholar 

  40. Thornburg RW, Carter C, Powell A, Rizhsky L, Mittler R, Horner HT (2003) A major function of the tobacco floral nectary is defense against microbial attack. Plant Syst Evol 238:211–218

    Google Scholar 

  41. Yamahara T, Shiono Y, Suzuki T, Tanaka K, Takio S, Sato K, Yamazaki S, Satoh T (1999) Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, Barbula unguiculata. J Biol Chem 274:33274–33278

    Article  PubMed  CAS  Google Scholar 

  42. Yost FJ, Fridovich I (1973) An iron-containing superoxide dismutase from Escherichia coli. J Biol Chem 248:4905–4908

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Daegu University research funds to SGP and by the National Science Foundation (IBN0235645) to RWT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Thornburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, S., Thornburg, R.W. Biochemistry of Nectar Proteins. J. Plant Biol. 52, 27–34 (2009). https://doi.org/10.1007/s12374-008-9007-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-008-9007-5

Keywords

Navigation