Skip to main content

Advertisement

Log in

Volcanic Geotopes and Their Geosites Preserved in an Arid Climate Related to Landscape and Climate Changes Since the Neogene in Northern Saudi Arabia: Harrat Hutaymah (Hai’il Region)

  • Original Article
  • Published:
Geoheritage Aims and scope Submit manuscript

Abstract

Maars and tuff rings are some of the most common volcanic landforms on Earth. They are inferred to be the product of the explosive interaction between rising magma (mostly basaltic) and various groundwater sources or surface water bodies. Maar and tuff ring volcanoes are commonly associated with extensive scoria cone fields that are fed by dispersed volcanic vents, providing access to the surface for magma over a long period of time (thousands to millions of years’ timescale). The presence of maar and tuff ring volcanoes, therefore, is an important signifier of the availability of water from sub-surface and/or surface water sources. As environmental conditions change over time, the groundwater table, as well as surface water availability, can change dramatically and this is likely be reflected in the type of volcanoes formed on the surface. Such changes are the most graphic and visible in volcanic fields that are today located in arid environments, where the presence of young volcanoes formed through interactions with water demonstrates how the environment can change over geological timescales. Therefore, these areas have high geoeducational values and can contribute to our understanding of how external (water sources controlled by climatic factors) and internal (magmatic) forces can shape the style of volcanism of a volcanic field. Harrat Hutaymah is one of the excellent locations where there is great abundance of maars and tuff rings. They are located in an area dominated today by various types of deserts. Harrat Hutaymah, therefore, demonstrates the global geological changes that can affect the style of volcanism and hence the resulting volcanic landscape. The richness of the region in archaeological sites and early settlements indicates the importance of this region for the early evolution of civilizations in the Middle East, which is likely to have been enhanced and/or modified by similar environmental changes over a much smaller timescale. Harrat Hutaymah provides a firm basis to demonstrate global changes through its volcanic heritage that are easily accessible and well exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdel Wahab A, Abul Maaty MA, Stuart FM, Awad H, Kafafy A (2014) The geology and geochronology of Al Wahbah maar crater, Harrat Kishb, Saudi Arabia. Quat Geochronol 21:70–76. doi:10.1016/j.quageo.2013.01.008

  • Al-Rehaili M, Shouman S (1985) Ground fracture and damage to buildings at An Na’ay village (27/42B), Kingdom of Saudi Arabia. Saudi Arabian Directorate General of Mineral Resources Open-File report DGMR-OF-06-1

  • Al-Talhi D (2012) Almulihiah: a rock art site in the Hail region, Saudi Arabia. Arab Archaeol Epigr 23(1):92–98

    Article  Google Scholar 

  • Armiero V, Petrosino P, Lirer L, Alberico I (2011) The GeoCaF project: proposal of a geosites network at Campi Flegrei (southern Italy). Geoheritage 3:195–219

    Article  Google Scholar 

  • Bankher KA, Al-Harthi AA (1999) Earth fissuring and land subsidence in Western Saudi Arabia. Nat Hazards 20:21–42

    Article  Google Scholar 

  • Bednarik RG (2002) The dating of rock art: a critique. J Archaeol Sci 29(11):1213–1233

    Article  Google Scholar 

  • Belousov A, Belousova M (2001) Eruptive process, effects and deposits of the 1996 and the ancient basaltic phreatomagmatic eruptions in Karymskoye Lake, Kamchatka, Russia. Spec Publ Int Assoc Sedimentol 30:35–60

    Google Scholar 

  • Berlin GL, Davis PA, Sheikho KM (1997) Identifying sand-obscured lava flow surfaces with SIR-A image data; Harrat Hutaymah, Saudi Arabia. Proc Themat Conf Geol Remote Sens 12(2):84–90

    Google Scholar 

  • Bitschene P, Schueller A (2011) Geo-education and geopark implementation in the Vulkaneifel European Geopark. GSA Field Guide 22:29–34

    Google Scholar 

  • Blusztajn J, Hart SR, Shimizu N, McGuire AV (1995) Trace-element and isotopic characteristics of spinel peridotite xenoliths from Saudi-Arabia. Chem Geol 123(1–4):53–65

    Article  Google Scholar 

  • Camp VE, Hooper PR, Roobol MJ, White DL (1987) The Madinah eruption, Saudi Arabia: Magma mixing and simultaneous extrusion of three basaltic chemical types. Bull Volcanol 49(2):489–508

    Article  Google Scholar 

  • Camp VE, Roobol MJ (1989) The Arabian continental alkali basalt province; part I, evolution of Harrat Rahat, Kingdom of Saudi Arabia; with Suppl. Data 89-04. Geol Soc Am Bull 101(1):71–95

    Article  Google Scholar 

  • Camp VE, Roobol MJ (1992) Upwelling asthenosphere beneath Western Arabia and its regional implications. J Geophys Res-Solid Earth 97(B11):15255–15271

    Article  Google Scholar 

  • Camp VE, Roobol MJ, Hooper PR (1991) The Arabian Continental Alkali Basalt Province. 2. Evolution of Harrats Khaybar, Ithnayn, and Kura, Kingdom of Saudi-Arabia. Geol Soc Am Bull 103(3):363–391

    Article  Google Scholar 

  • Camp VE, Roobol MJ, Hooper PR (1992) The Arabian Continental Alkali Basalt Province. 3. Evolution of Harrat Kishb, Kingdom of Saudi-Arabia. Geol Soc Am Bull 104(4):379–396

    Article  Google Scholar 

  • Chough SK, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37:1115–1135

    Article  Google Scholar 

  • Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego, pp 331–343

    Google Scholar 

  • Csillag G, Korbely B, Nemeth K (2004) Volcanological sites of Balaton Uplands National Park as key points for a proposed geopark in western Hungary. Occas Pap Geol Inst Hung 203:49

    Google Scholar 

  • Drandaki IT, Koutsouveli A, Ioakim C (1997) Geological geomorphological heritage—Geotopes. In: Marinos PG, Koukis GC, Tsiambaos GC, Stournaras GC (eds) Engineering Geology and the Environment Vol. 1-3., Athens, Greece, pp 3021-3026

  • Eichmann R, Schaudig H, Hausleiter A (2006) Archaeology and epigraphy at Tayma (Saudi Arabia). Arab Archaeol Epigr 17(2):163–176

    Article  Google Scholar 

  • El Difrawy MA, Rungeb MG, Mouftia MR, Croninc SJ, Bebbington M (2013) A first hazard analysis of the Quaternary Harrat Al-Madinah volcanic field, Saudi Arabia. J Volcanol Geotherm Res 267:39–46

    Article  Google Scholar 

  • Erfurt-Cooper P (2011) Geotourism in volcanic and geothermal environments: playing with fire? Geoheritage 3(3):187–193

    Article  Google Scholar 

  • Fairer GM (1986) Geologic map of the Harrat Ithnayn Quadrangle, sheet 26D, Kingdom of Saudi Arabia. In: Directorate General of Mineral Resources, Ministry of Petroleum and Mineral Resources, Jiddah, Jiddah, Saudi Arabia (SAU), pp 15-15

  • Fassoulas C, Mouriki D, Dimitriou-Nikolakis P, Iliopoulos G (2011) Quantitative assessment of geotopes as an effective tool for geoheritage management. Geoheritage:1-17

  • Giusti C, Calvet M (2010) The inventory of French geomorphosites and the problem of nested scales and landscape complexity. Geomorphologie-Relief Processus Environ 2:223–244

    Article  Google Scholar 

  • Gondal MA, Nasr MM, Ahmed Z, Yamani ZH (2009) Determination of trace elements in volcanic rock samples collected from cenozoic lava eruption sites using LIBS. J Environ Sci Health Part a-Toxic/Hazardous Substances Environ Eng 44(5):528–535

    Article  Google Scholar 

  • Groucutt HS, Petraglia MD (2012) The prehistory of the Arabian peninsula: deserts, dispersals, and demography. Evol Anthropol 21(3):113–125

    Article  Google Scholar 

  • Gutmann JT (1976) Geology of Crater Elegante, Sonora, Mexico. Geol Soc Am Bull 87:1718–1729

    Article  Google Scholar 

  • Gutmann JT (2002) Strombolian and effusive activity as precursors to phreatomagmatism; eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico. J Volcanol Geotherm Res 113(1–2):345–356

    Article  Google Scholar 

  • Harris AJL (2009) The pit-craters and pit-crater-filling lavas of Masaya volcano. Bull Volcanol 71(5):541–558

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism; a case study from New Zealand. J Volcanol Geotherm Res 91(1):97–120

    Article  Google Scholar 

  • Joyce B (2009) Geomorphosites and volcanism. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. Verlag Dr. Friedrich Pfeil, Munich, Germany, pp 175–188

    Google Scholar 

  • Joyce B (2010) Volcano tourism in the new Kanawinka Global Geopark of Victoria and SE South Australia. In: Erfurt-Cooper P, Cooper M (eds) Volcano and geothermal tourism. Sustainable Geo-Resources for Leisure and Recreation. Earthscan, London, UK, pp 302–311

    Google Scholar 

  • Kellogg KS (1984) Geology of Precambrian rocks and rocks of the northern Harrat Hutaymah volcanic field, Baq'a Quadrangle, Sheet 27 F, Kingdom of Saudi Arabia. Saudi Arabian Deputy Ministry for Mineral Resources, Open-File Report:41-41

  • Kennedy D (2011) The "Works of the Old Men" in Arabia: remote sensing in interior Arabia. J Archaeol Sci 38(12):3185–3203

    Article  Google Scholar 

  • Kereszturi G, Csillag G, Nemeth K, Sebe K, Balogh K, Jager V (2010) Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. Cent Eur J Geosci 2(3):362–384

    Article  Google Scholar 

  • Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—new advances in understanding volcanic systems. inTech Open, Rijeka, Croatia, pp 3-88 doi: 10.5772/51387]

  • Kereszturi G, Németh K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201(1–4):227–240

    Article  Google Scholar 

  • Liban SM (1985) Geographic map of the Harrat Ithnayn Quadrangle, Sheet 26D, Kingdom of Saudi Arabia. In: Kingdom of Saudi Arabia, Ministry of Petroleum and Mineral Resources, Jiddah, Jiddah, Saudi Arabia (SAU), pp 0-sheet

  • Lorenz V (1974) Vesiculated tuffs and associated features. Sedimentology 21:273–291

    Article  Google Scholar 

  • Lorenz V (1985) Maars and diatremes of phreatomagmatic origin: a review. Trans Geol Soc S Afr 88:459–470

    Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lorenz V, McBirney AR, Williams H (1970) An investigation of volcanic depressions. Part III. Maars, tuff-rings, tuff-cones and diatremes. Clearinghouse for Federal Scientific and Technical Information, Springfield, Va. Houston, Texas, p 196

    Google Scholar 

  • McClure HA (1976) Radiocarbon chronology of Late Quaternary lakes in Arabian Desert. Nature 263(5580):755–756

    Article  Google Scholar 

  • McGuire AV (1988) The mantle beneath the Red Sea margin; xenoliths from western Saudi Arabia. Tectonophysics 150(1–2):101–119

    Article  Google Scholar 

  • Moufti MR, Németh K (2013) The intra-continental Harrat Al Madinah Volcanic Field, Western Saudi Arabia: a proposal to establish Harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia. Geoheritage 5(3):185–206

    Article  Google Scholar 

  • Moufti MR, Németh K, El-Masry N, Qaddah A (2013) Geoheritage values of one of the largest maar craters in the Arabian Peninsula: the Al Wahbah Crater and other volcanoes (Harrat Kishb, Saudi Arabia). Cent Eur J Geosci 5(2):254–271

    Article  Google Scholar 

  • Murcia H, Németh K, Moufti MR, Lindsay JM, El-Masry N, Cronin SJ, Qaddah A, Smith IEM (2014) Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: implications for the description of continental lava fields. J Asian Earth Sci 84:131–145. doi: 10.1016/j.jseaes.2013.10.002

    Google Scholar 

  • Needham AJ, Lindsay JM, Smith IEM, Augustinus P, Shane PA (2011) Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 201(1–4):126–142

    Article  Google Scholar 

  • Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Canon-Tapia E, Szakacs A (eds) What is a volcano? Geological Society of America, Boulder, Colorado, pp 43–66

    Chapter  Google Scholar 

  • Németh K, Cronin SJ (2008) Volcanic craters, pit craters and high-level magma-feeding systems of a mafic island-arc volcano: Ambrym, Vanuatu, South Pacific. In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems. Geological Society, London, London, pp 85–99

    Google Scholar 

  • Németh K, Cronin SJ, Charley D, Harrison M, Garae E (2006) Exploding lakes in Vanuatu—"Surtseyan-style" eruptions witnessed on Ambae Island. Episodes 29(2):87–92

    Google Scholar 

  • Németh K, Cronin SJ, Smith IEM, Flores JA (2012) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bull Volcanol 74(9):2121–2137

    Article  Google Scholar 

  • Nemeth K, Martin U, Harangi S (2001) Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J Volcanol Geotherm Res 111(1–4):111–135

    Article  Google Scholar 

  • Németh K, White JDL (2003) Reconstructing eruption processes of a Miocene monogenetic volcanic field from vent remnants: Waipiata Volcanic Field, South Island, New Zealand. J Volcanol Geotherm Res 124(1–2):1–21

    Article  Google Scholar 

  • Okubo CH, Martel SJ (1998) Pit crater formation on Kilauea volcano, Hawaii. J Volcanol Geotherm Res 86(1–4):1–18

    Article  Google Scholar 

  • Pallister JS (1985) Reconnaissance geology of the Harrat Hutaymah Quadrangle, sheet 26/42A, Kingdom of Saudi Arabia. Open-file report—U. S. Geological Survey:82-82

  • Risso C, Németh K, Combina AM, Nullo F, Drosina M (2008) The role of phreatomagmatism in a Plio-Pleistocene high-density scoria cone field: Llancanelo Volcanic Field (Mendoza), Argentina. J Volcanol Geotherm Res 169(1–2):61–86

    Article  Google Scholar 

  • Rohling HG, Schmidt-Thome M (2004) Geoscience for the public: geotopes and national GeoParks in Germany. Episodes 27(4):279–283

    Google Scholar 

  • Roobol M, Shouman S, Al Solami A (1985) Earth tremors, ground fractures, and damage to buildings at Tabah (27/42C). Saudi Arabian Deputy Ministry for Mineral Resources Technical Record DGMR-TR-05-4.

  • Roobol MJ, Camp VE (1996) The "whaleback" flows of Saudi Arabia; giant basaltic lava flows propagating across a low-angle surface to form chains of rootless shield volcanoes. Contrib Econ Geol Res Unit 56:62–63

    Google Scholar 

  • Siebe C (1986) On the possible use of cinder cones and maars as paleoclimatic indicators in the closed basin of Serdan-Oriental, Puebla, Mexico. J Volcanol Geotherm Res 28:397–400

    Article  Google Scholar 

  • Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Geol Soc Am Bull 108(10):1199–1211

    Article  Google Scholar 

  • Stoppa F (1996) The San Venanzo maar and tuff ring, Umbria, Italy: eruptive behaviour of a carbonatite-melilitite volcano. Bull Volcanol 57(7):563–577

    Google Scholar 

  • Stoppa F, Rosatelli G, Schiazza M, Tranquilli A (2012) Hydrovolcanic vs magmatic processes in forming maars and associated pyroclasts: the Calatrava—Spain—case history. In: Stoppa F (ed) Updates in volcanology. INTECH, Rijeka, Croatia, pp 3–26

    Google Scholar 

  • Stoppa F, Schiazza M (2013) An overview of monogenetic carbonatitic magmatism from Uganda, Italy, China and Spain: volcanologic and geochemical features. J S Am Earth Sci 41:140–159

    Article  Google Scholar 

  • Thornber CR (1990) Geologic map of Harrat Hutaymah, with petrologic classification and distribution of ultramafic inclusions, Saudi Arabia. In: U. S. Geological Survey, Reston, VA, Reston, VA, United States (USA), pp 0-1 sheet

  • Thornber CR (1993) The petrology, geochemistry and origin of ultramafic inclusions and mafic alkaline volcanics from Harrat Hutaymah, Saudi Arabia. PhD (Doctoral) thesis, Ann Arbor, MI, United States (USA) [unpublished]:271-271

  • Thornber CR (1994) Ultramafic inclusions from Harrat Hutaymah; a record of mantle magmatism beneath north central Arabia. CPRM - Spec Publ 1A:434–454

    Google Scholar 

  • Thornber CR, Anonymous (1991) Hot, cold, wet, and dry Hutaymah ultramafic inclusions; a record of mantle magmatism beneath the Arabian Shield and flanking the Red Sea Rift. Proceedings of the International Kimberlite Conference 5:423-425

  • Thornber CR, Pallister JS (1985) Mantle xenoliths from northern Saudi Arabia. Eos, Trans, Am Geophys Union 66(18):393

    Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes; processes and problems. J Volcanol Geotherm Res 177(4):857–873

    Article  Google Scholar 

  • Vergniolle S, Manga M (2000) Hawaiian and strombolian eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 447–461

    Google Scholar 

  • Vespermann D, Schmincke H-U (2000) Scoria cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 683–694

    Google Scholar 

  • Vincent P (2008) Saudi Arabia—an environemental overview. Taylor and Francis, London, p 309

    Book  Google Scholar 

  • Waters AC, Fisher RV (1971) Base surges and its deposits: Capelinhos and Taal volcanoes. J Geophys Res 76:5596–5614

    Article  Google Scholar 

  • White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatreme volcanoes; a review. J Volcanol Geotherm Res 201(1–4):1–29

    Article  Google Scholar 

Download references

Acknowledgments

This report is based on research results of the King Abdulaziz University’s Volcanic Risk in Saudi Arabia (VORiSA) project. Critical comments from Journal reviewers made this note more valuable. Dr. Kate Arentsen helped to improve the manuscript significantly. Logistical help by the Saudi Police Force of the region, village and town councils are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly Németh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moufti, M.R., Németh, K., El-Masry, N. et al. Volcanic Geotopes and Their Geosites Preserved in an Arid Climate Related to Landscape and Climate Changes Since the Neogene in Northern Saudi Arabia: Harrat Hutaymah (Hai’il Region). Geoheritage 7, 103–118 (2015). https://doi.org/10.1007/s12371-014-0110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12371-014-0110-3

Keywords

Navigation