Skip to main content

Advertisement

Log in

Volcanic Geosites and Their Geoheritage Values Preserved in Monogenetic Neogene Volcanic Field, Bahariya Depression, Western Desert, Egypt: Implication for Climatic Change-Controlling Volcanic Eruption

  • Original Article
  • Published:
Geoheritage Aims and scope Submit manuscript

Abstract

Bahariya monogenetic volcanic field is characterized by important geomorphological features (geomorphosites), namely, sub-circular maar-tuff ring, scoria cones, and domal-shaped tumuli. These geomorphosites constitute an asset for geoeducation, geotourism and miscellaneous social activities. They offer important knowledge into the paleoenvironmental and climatic factors that affected the style of volcanism at the occasion, and eventually shaped the diverse landforms found in the volcanic field. Bahariya Oasis is exclusive for its excellent locations where many volcanic heritages of high value give evidence of phreatomagmatic and effusive-controlled phases which formed volcanic landscapes under humid to dry climate. The geoheritage and archeological sites of early settlements are abundant in the Bahariya Oasis, accentuating the scientific magnitude of this region. There have been seven geosites recognized such as (1) the scoria cone, (2) the lava flows and their surface morphological features, (3) the pseudopillow fractures, (4) columnar joints, (5) peperites, (6) tumuli, and (7) rootless cones. These geosites coupled with other unique sites define the Oasis as global geopark. The latter will consider as an excellent logistical network to endorse volcanic geosciences and raise the economic growth in this part of Bahariya Oasis. The diverse geological characteristics at the Bahariya make this area a high volcanic geodiversity that can be used for geoeducational programs and geotourism. Excursions and research programs carried out by universities will contribute to enhanced geoconservation for local sustainable development. Currently, in the Bahariya region, tourism is not well developed, but it is recommended that, roads be improved to give better accessibility to the geomorphosites, and interpretative panels, informative brochures, multi-media presentations, seminars and workshops, scientific lectures, and postcards be produced to inform tourists about the geology of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Afify AM, Sanz-Montero ME, Clavo JP, Wanas HA (2015) Diagenetic origin of ironstone crusts in the lower cenomanian bahariya formation, bahariya depression, western desert, Egypt. J Afr Earth Sci 101:333–349

    Article  Google Scholar 

  • Anderson SW, Embley RW, Fink JH (1999) Crease structures: indicators of emplacement rates and surface stress regimes of lava flows. Geol Soc Am Bull 104:615–625

    Article  Google Scholar 

  • Badman T (2010) World heritage and geomorphology. In: Migoń P (ed) Geomorphological landscapes of the world. Springer, Dordrecht, pp 357–368

    Google Scholar 

  • Bitschene P, Schueller A (2011) Geo-education and geopark implementation in the Vulkaneifel European Geopark. GSA Field Guide 22:29–34

    Google Scholar 

  • Bradbury J (2014) A keyed classification of natural geodiversity for land management and nature conservation purposes. Proc Geol Assoc 125:329–349

    Article  Google Scholar 

  • Brocx M, Semeniuk V (2007) Geoheritage and geoconservation history, definition,scope, and scale. J Roy Soc W Aust 90:53–87

    Google Scholar 

  • Brocx M, Semeniuk V (2009) Developing a tool-kit for geoheritage and geoconservation in Western Australia. ProGeo News 2009(1):5–9

  • Brocx M, Semeniuk V (2011) Assessing geoheritage values: a case study using Leschenault Peninsula and its estuarine lagoon, southwestern Australia. Proc Linnean Soc NSW 132:115–130

    Google Scholar 

  • Budkewitsch P, Robin PY (1994) Modelling the evolution of columnar joints. J Volcanol Geotherm Res 59:219–239

    Article  Google Scholar 

  • Camp VE, Roobol MJ, Hooper PR (1992) The Arabian continental alkali basalt province. 3. Evolution of Harrat Kishb, Kingdom of Saudi-Arabia. Geol Soc Am Bull 104(4):379–396

    Article  Google Scholar 

  • Carracedo Sánchez M, Sarrionandia F, Juteau T, Gil Ibarguchi JI (2012) Structure and organization of submarine basaltic flows: sheet flow transformation into pillow lavas in shallow submarine environments. Geol Rundsch 101:2201–2214

    Article  Google Scholar 

  • Catuneanu O, Khalifa MA, Wanas HA (2006) Sequence stratigraphy of the lower cenomanian bahariya formation, bahariya oasis, western desert, Egypt. Sediment Geol 190:121–137

    Article  Google Scholar 

  • Chitwood LA (1994) Inflated basaltic lava—examples of processes and landforms from central and southeast Oregon. Or Geol 56:11–21

    Google Scholar 

  • De A (1996) Entablature structure in Deccan Trap flows: its nature and probable mode of origin. Gond Geol Mag 2:439–447

    Google Scholar 

  • DeGraff J, Long P, Aydin A (1989) Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows. J Volcanol Geotherm Res 38:309–324

    Article  Google Scholar 

  • Dingwall P, Weighell T, Badman T (2005) Geological world heritage: a global framework. IUCN, Gland

    Google Scholar 

  • Dixon G (1996) Geoconservation: an international review and strategy for Tasmania. Miscellaneous Report, Hobart, Tas. Parks and Wildlife Service, Tasmania

  • Duraiswami RA, Bondre NR, Dole G (2004) Possible lava tube system in a hummocky lava flew at Daund, western Deccan Volcanic Province, India. Ind Acad of Earth Planet Sci 113:819–829

    Google Scholar 

  • El Aref MM, El Sharkawi MA, Khalil MA (1999) Geology and genesis of the stratabound and stratiform Cretaceous-Eocene iron ore deposits of the Bahariya region, Western Desert, Egypt. In: GAW 4th International Conference. Cairo University, Egypt, 450–475

  • El Aref MM, Mesaed AA, Khalil MA, Salama WS (2006) Stratigraphic setting, facies analyses and depositional environments of the Eocene ironstones of Gabal Ghorabi mine area, El Bahariya Depression, Western Desert, Egypt. Egypt. J Geol 50:29–57

    Google Scholar 

  • Erfurt-Cooper P (2011) Geotourism in volcanic and geothermal environments: playing with fire? Geoheritage 3(3):187–193

    Article  Google Scholar 

  • Erikstad L (2013) Geoheritage and geodiversity management—the questions for tomorrow. Proc Geol Assoc 124:713–719

    Article  Google Scholar 

  • Fagents SA, Thordarson T (2007) Rootless volcanic cones in Iceland and on Mars. The geology of Mars. Cambridge University Press, Cambridge, pp 151–177

    Google Scholar 

  • Fagents SA, Lanagan P, Greeley R (2002) Rootless cones on Mars: a consequence of lava-ground ice interaction. Volcano–Ice Interaction on Earth and Mars. Geol Soc Lond, Spec Publ 202:295–317. https://doi.org/10.1144/GSL.SP.2002.202.01.15

    Article  Google Scholar 

  • Forbes AES, Blake S, McGarvie DW, Tuffen H (2012) Pseudopillow fracture systems in lavas: insights into cooling mechanisms and environments from lava flow fractures. J Volcanol Geotherm Res 245–246:68–80

    Article  Google Scholar 

  • Glaze LS, Anderson SW, Stofan ER, Baloga S, Smrekar SE (2005) Statistical distribution of tumuli on pahoehoe flow surfaces: analysis of examples in Hawaii and Iceland and potential applications to lava flows on Mars. J Geophys Res Solid Earth 110(B8)

  • Gontareva EF, Ansari MK, Ruban DA, Ahmad M, Singh TN (2015) Geological dimension of the cultural heritage: a case example of the Ajanta Caves (Maharashtra, India). Cad do Lab Xeol_oxico Laxe 38:67–78

    Google Scholar 

  • Greeley R, Fagents SA (2001) Icelandic pseudocraters as analogs to some volcanic cones on Mars. J Geophys Res 106(E9):20527–20546

    Article  Google Scholar 

  • Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central Africa: an overview. J Afr Earth Sci 43:83–143

    Article  Google Scholar 

  • Gutmann JT (1976) Geology of Crater Elegante, Sonora, Mexico. Geol Soc Am Bull 87:1718–1729

    Article  Google Scholar 

  • Gutmann JT (2002) Strombolian and effusive activity as precursors to phreatomagmatism; eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico. J Volcanol Geotherm Res 113(1–2):345–356

    Article  Google Scholar 

  • Harris AJL (2009) The pit-craters and pit-crater-filling lavas of Masaya volcano. Bull Volcanol 71(5):541–558

    Article  Google Scholar 

  • Helba AA, El Aref MM, Saad F (2001) Lutetian oncoidal and ooidal ironstone sequence; depositional setting and origin; northeast El Bahariya Depression, Western Desert, Egypt. Egypt J Geol 45(1A):325–351

    Google Scholar 

  • Henriques MH, Neto K (2015) Geoheritage at the equator: selected geosites of saoTome island (Cameron line, Central Africa). Sustainability 7:648–667

    Article  Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, McKay K (1994) Emplacement and inflation of pahoehoe sheet flows—observation and measurements of active lavas on Kilauea volcano, Hawaii. Geol Soc Am Bull 106:351–370

    Article  Google Scholar 

  • Hooper C (1997) Structures, textures, and cooling histories of Columbia River basaltic flows. Geol Soc Am Bull 97:1144–1155

    Google Scholar 

  • Iron Exploration Project (IEP) (1993–1997) Cairo Univ. And EGSMA, Phase I-III Internal Reports. Cairo Univ Fac.of Sci., Geol.Dept., report I (1993–1994, 147p), report II (1994–1995, 161p), report III (1995–1997, 287p)

  • Issawi B, Francis M, Youssef A, Osman R (2009) The Phanerozoic of Egypt: a geodynamic approach. Geological Survey of Egypt, Cairo, p 589

    Google Scholar 

  • Jones C (2008a) History of geoparks. Geol Soc Lond Spec Publ 300:37–60 http://sp.lyellcollection.org/content/300/1/273.abstract. Accessed 28 Jan 2011

    Article  Google Scholar 

  • Jones C (2008b) Towards a history of geotourism: definitions, antecedents and the future. Geol Soc Lond Spec Publ 300:37–60

    Article  Google Scholar 

  • Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—new advances in understanding volcanic systems. inTech Open, Rijeka, pp 3–88. https://doi.org/10.5772/51387

    Google Scholar 

  • Kereszturi G, Csillag G, Nemeth K, Sebe K, Balogh K, Jager V (2010) Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. Cent Eur J Geosci 2(3):362–384

    Google Scholar 

  • Kereszturi G, Németh K, Csillag G, Balogh K, Kovács J (2011) The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Mio/Pleistocene continental volcanic field in western Hungary. J Volcanol Geotherm Res 201(1–4):227–240

    Article  Google Scholar 

  • Kereszturi G, Jordan G, Németh K, Doniz-Paez JF (2012) Syn-eruptive morphometric variability of monogenetic scoria cones. Bull Volcanol 74(9):2171–2185

    Article  Google Scholar 

  • Keszthelyi L, Thordarson T (2000) Rubbly Pahoehoe: a previously undescribed but widespread lava type transitional between aa and pahoehoe. Geol Soc Amer, Abstracts and Programs, v.32,no.7, Abs.No.52593

  • Khalaf EA, Hammad MS (2016) Morphology and development of pahoehoe flow-lobe tumuli and associated features from a monogenetic basaltic volcanic field, Bahariya Depression, Western Desert, Egypt. J Afr Earth Sci 113:165–180

    Article  Google Scholar 

  • Khalaf EA, Abdel Motelib A, Hammed MS, El Manawi AH (2015) Volcanosedimentary characteristics in the Abu Treifiya Basin, Cairo-Suez District, Egypt: example of dynamics and fluidization over sedimentary and volcaniclastic beds by emplacement of syn-volcanic basaltic rocks. J Volcanol Geotherm Res 308:158–178

    Article  Google Scholar 

  • Klitzsch E, List FK, Pohlmann G, Handley R, Hermina M, Meissner H (1986) Geological map of Egypt: 1:50,000 scale, 20 sheets. Conco/Egyptian General Petroleum Corporation, Cairo

    Google Scholar 

  • Klitzsch E, List FK, Pohlmann G, Handley R, Hermina M, Meissner G (1987) Geological map of Egypt: 1:50,000 scale, 20 sheets. Conoco/Egyptian General Petroleum Corporation, Cairo

    Google Scholar 

  • Lodge R, Lescinsky D (2009) Fracture patterns at lava-ice contacts on Kokostick Butte, OR, and Mazama Ridge, Mount Rainier, WA: implications for flow emplacement and cooling histories. J Volcanol Geotherm Res 185(4):298–310

    Article  Google Scholar 

  • Long P, Wood B (1986) Structures, textures, and cooling histories of Columbia River basalt flows. Geol Soc Am Bull 97(9):1144–1155

    Article  Google Scholar 

  • Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274

    Article  Google Scholar 

  • Lyle P (2000) The eruption environment of multi-tiered columnar basalt lava flows. J Geol Soc Lond 157:715–722

    Article  Google Scholar 

  • McClintock MK, White JDL, Houghton BF, Skilling IP (2008) Physical volcanology of a large crater complex formed during the initial stages of Karoo flood basalt volcanism, Sterkspruit, Eastern Cape, South Africa. J Volcanol Geotherm Res 172:92–111

    Article  Google Scholar 

  • McPhie J, Doyle M, Allen R (1993) Volcanic textures: a guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposit and Exploration Studies, University of Tasmania, Hobart (198 pp)

    Google Scholar 

  • Mee K, Tuffen H, Gilbert J (2006) Snow-contact volcanic facies and their use in determining past eruptive environments at Nevados de Chillan volcano, Chile. Bull Volcanol 68:363–376

    Article  Google Scholar 

  • Meneisy MY (1990) Vulcanicity. In: Said R (ed) The geology of Egypt. A.A. Balkema, Rotterdam, pp 157–172 (Chapter 9)

    Google Scholar 

  • Meneisy MY, Abdel Aal AY (1983) Geochronology of Phanerozoic volcanic rocks in Egypt. Bull Fac Sci 25:163–176

    Google Scholar 

  • Meneisy MY, El Kalioubi B (1975) Isotopic ages of the volcanic rocks of the Bahariya Oasis. Ann Geol Surv Egypt 5:119–122

    Google Scholar 

  • Moroni A, Gnezdilova VV, Ruban DA (2015) Geological heritage in archaeological sites: case examples from Italy and Russia. Proc Geol Assoc 126:244–251

    Article  Google Scholar 

  • Moufti M, Nemeth K, ElMasry N, Qaddah A (2015) Volcanic geotopes and their geosites preserved in an arid climate related to landscape and climate changes since the neogene in Northern Saudi Arabia: Harrat Hutaymah (Hai’il Region). Geoheritage 7:103–118

    Article  Google Scholar 

  • Moustafa AR, Saoudi A, Ibrahim IM, Molokhia H, Schwartz B (2003) Geoarabian, Bahrain. Structural setting and tectonic evolution of the Bahariya Depression, Western Desert, Egypt 8:91–124

  • Needham AJ, Lindsay JM, Smith IEM, Augustinus P, Shane PA (2011) Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 201(1–4):126–142

    Article  Google Scholar 

  • Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Canon-Tapia E, Szakacs A (eds) What is a volcano? Geological Society of America, Boulder, pp 43–66

    Chapter  Google Scholar 

  • Németh K, White JDL (2003) Intra-vent peperites related to the phreatomagmatic volcano, Waipiata, New Zealand. J Volcanol Geotherm Res 183:30–41

    Article  Google Scholar 

  • Németh K, Cronin SJ (2008) Volcanic craters, pit craters and high-level magma-feeding systems of a mafic island-arc volcano: Ambrym, Vanuatu, South Pacific. In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems. Geol Soci Lond, pp 85–99

  • Németh K, Martin U, Harangi S (2001) Miocene phreatomagmatic volcanismat Tihany (Pannonian Basin, Hungary). J Volcanol Geotherm Res 111(1–4):111–135

    Article  Google Scholar 

  • Németh K, Haller MJ, Martin U, Rossi C, Massafero G (2008) Morphology of lava tumuli from Mendoza, Patagonia (Argentina) and Al-Haruy (Libya). Zeitschrift fuer Geomorphologie 52:181–194

    Article  Google Scholar 

  • Németh K, Casadevall T, Moufti MR, Marti J (2017) Volcanic geoheritage. BV 9:251–254

  • Noguchi R, Hoskuldsson A, Kurita K (2016) Detailed topographical, distributional, and material analyses of rootless cones in Myvatn, Iceland. J Volcanol Geotherm Res 318:89–102

    Article  Google Scholar 

  • Ollier CD (2012) Problems of geotourism and geodiversity. Quaest Geog 31(3):57–61

    Article  Google Scholar 

  • Panizza M, Piacente S (1993) Geomorphological assets evaluation. Zeit fur Geomorph 87:13–18

    Google Scholar 

  • Panizza M, Piacente S (2003) Geomorfologiaculturale. Pitagora Editrice, Bologna 350 p

    Google Scholar 

  • Parfitt EA, Wilson L (1995) Explosive volcanic eruptions - IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121:226–232

    Article  Google Scholar 

  • Pasquare` F, Tibaldi A (2007) Structure of a sheet-laccolith system revealing the interplay between tectonic and magma stresses at Stardalur Volcano, Iceland. J Volcanol Geotherm Res 161:131–150

    Article  Google Scholar 

  • Plysnina E, Sallam E, Ruban D (2016) Geological heritage of the Bahariya and Farafra oases, the central Western Desert, Egypt. J Afr Earth Sci 116:151–159

    Article  Google Scholar 

  • Prosser CD (2013) Our rich and varied geoconservation portfolio: the foundation for the future. Proc Geol Assoc 124:568–580

    Article  Google Scholar 

  • Quaranta G (1993) Geomorphological assets: conceptual aspect and application in the area of Crodo da Lago (Cortina d’Ampezzo, Dolomites). In: Panizza M, Soldati M, Barani D (eds) European intensive course on applied geomorphology. Proceedings, Modena—Cortina d’Ampezzo, 24 June–3 July 1992, pp 49–60

  • Risso C, Németh K, Combina AM, Nullo F, Drosina M (2008) The role of phreatomagmatism in a Plio-Pleistocene high-density scoria cone field: Llancanelo Volcanic Field (Mendoza), Argentina. J Volcanol Geotherm Res 169(1–2):61–86

    Article  Google Scholar 

  • Roobol MJ, Camp VE (1996) The “whaleback” flows of Saudi Arabia; giant basaltic lava flows propagating across a low-angle surface to form chains of rootless shield volcanoes. Contrib Econ Geol Res Unit 56:62–63

    Google Scholar 

  • Ruban DA (2015) Geotourism e a geographical review of the literature. Tour Manag Perspect 15:1–15

    Article  Google Scholar 

  • Said R (1962) The geology of Egypt. ElseviersciItd, Amsterdam, p 337

    Google Scholar 

  • Salama W, El Aref MM, Gaupp R (2014) Facies analysis and palaeoclimatic significance of ironstones formed during the Eocene greenhouse. Sedimentology 61:1594–1624

    Article  Google Scholar 

  • Scheidegger AE (1978) The tectonic significance of joints in the Canary Islands. Rock Mech 11:69–85

    Article  Google Scholar 

  • Sehim A (1993) Cretaceous tectonics in Egypt. J Geol 37:335–372

    Google Scholar 

  • Self S, Keszthelyi L, Thordarson T (1998) The importance of pahoehoe. Annu Rev Earth Planet Sci 26:81–110

    Article  Google Scholar 

  • Sharples EB (2002) Australie geoheritage history of study, a new inventory of geosites and applications to geotourism and geoparks. Geoheritage 2:39–56

    Google Scholar 

  • Sheth HC, Duraiswami RA, Umrikar B (2004) The emplacement of pahoehoe lavas on Kileuea and Deccan traps. J Earth Sys Sci 115:615–626

    Article  Google Scholar 

  • Showstack R (2015) New commission aims to protect volcanic geoheritage. EOS 96. https://doi.org/10.1029/2015EO032343

  • Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. In: Skilling IP,White JDL, McPhie J (eds) Peperite: processes and products of magma-sediment mingling. J Volcanol Geotherm Res Vol 114:1–17

  • Sohn YK (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheiyu Island, Korea. Geol Soc Am Bull 108:1199–1211

    Article  Google Scholar 

  • Sohn YK, Chough SK (1992) The IIchulbong tuff cone, Cheju Island,South Korea. Sedimentology 39(4):523–544

    Article  Google Scholar 

  • Stoppa F (1996) The San Venanzo maar and tuff ring, Umbria, Italy: eruptive behaviour of a carbonatite-melilitite volcano. Bull Volcanol 57(7):563–577

    Google Scholar 

  • Stoppa F, Rosatelli G, SchiazzaM TA (2012) Hydrovolcanic vs magmatic processes in forming maars and associated pyroclasts: the Calatrava—Spain—case history. In: Stoppa F (ed) Updates in volcanology. INTECH, Rijeka, pp 3–26

    Google Scholar 

  • Tawadros E (2011) Geology of North Africa. CRC Press, London, p 930

    Book  Google Scholar 

  • Thorarinsson S (1953) The crater groups in Iceland. Bull Volcanol 2:1–44

    Google Scholar 

  • Tucker D, Scott K (2009) Structures and facies associated with the flow of subaerial basaltic lava into a deep freshwater lake: the Sulphur Creek lava flow, North Cascades, Washington. J Volcanol Geotherm Res 185(4):311–322

    Article  Google Scholar 

  • Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes; processes and problems. J Volcanol Geotherm Res 177(4):857–873

    Article  Google Scholar 

  • Van Otterloo J, Cas RAF, Scutter CR (2015) The fracture behaviour of volcanic glass and relevance to quench fragmentation during formation of hyaloclastite and phreatomagmatism. Earth Sci Rev 151:79–116

    Article  Google Scholar 

  • Vergniolle S, Mangan MT. (2000) Hawaiian and strombolian eruptions. In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (eds) Encyclopedia of Volcanoes, pp 447–461

  • Vespermann D, Schmincke HU, Somner CA (2000) Scoria cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutts SR, Rymer H, Stix Y (eds) Encyclopedia of volcanoes. Academic press, San Diego, pp 683–694

    Google Scholar 

  • Walker GPL (1991) Basaltic volcano system. Geol Soc Landon Spec Publ 76:3–38

    Article  Google Scholar 

  • White JDL (1990) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258

    Article  Google Scholar 

  • White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53:239–258

    Article  Google Scholar 

  • White JDL, Houghton M (2000) Impure coolant and interaction dynamics of phreatomagmatic eruptions. J Volcanol Geotherm Res 74:155–170

    Article  Google Scholar 

  • White JDL, Ross P-S (2011) Maar-diatreme volcanoes; a review. J Volcanol Geotherm Res 201(1–4):1–29

    Article  Google Scholar 

  • White JDL, McPhie J, Skilling IP (2000) Peperite: a useful genetic term. Bull Volcanol 62:65–66

    Article  Google Scholar 

  • White JDL, Bryan SE, Ross PS, Self S, Thordarson T (2009) Physical volcanology of continental large igneous provinces: update and review. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in volcanology. The legacy of George Walker. Special publications of IAVCEI,pp, pp 1–321

    Google Scholar 

  • Wilmoth RA, Walker GPL (1993) P-type and S-type pahoehoe: a study of vesicle distribution patterns in Hawaiian lava flows. J Volcanol Geotherm Res 55:129–142

    Article  Google Scholar 

  • Wimbledon WAP, Smith-Meyer S (2012) Geoheritage in Europe and its conservation. ProGEO, Oslo, p 405

    Google Scholar 

  • Wood C (2009) World heritage volcanoes: thematic study. IUCN, Gland

    Google Scholar 

  • Zangmo Tefogoum G, Kagou Dongmo A, Nkouathio DG, Wandji P, Gountie Dedzo M (2014) Geomorphological features of the Manengouba Volcano (Cameroon Line): assets for potential geopark development. Geoheritage 6:225–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezz El Din Abdel Hakim Khalaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf, E.E.D.A.H., Wahed, M.A., Maged, A. et al. Volcanic Geosites and Their Geoheritage Values Preserved in Monogenetic Neogene Volcanic Field, Bahariya Depression, Western Desert, Egypt: Implication for Climatic Change-Controlling Volcanic Eruption. Geoheritage 11, 855–873 (2019). https://doi.org/10.1007/s12371-018-0336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12371-018-0336-6

Keywords

Navigation