Skip to main content
Log in

Biocontrol of Colletotrichum falcatum with volatile metabolites produced by endophytic bacteria and profiling VOCs by headspace SPME coupled with GC–MS

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

A total of 49 endophytic bacteria isolated from sugarcane were screened in vitro for antagonistic property against C. falcatum through production of volatile organic compounds (VOCs). Among them, 27 bacteria produced volatiles with moderate inhibitory level, i.e. 30 to 50% and 9 produced volatiles with strong inhibitory properties, i.e. > 50% mycelial growth inhibition over control. The volatile compounds produced by B. axarquiensis—ESR 7 inhibited C. falcatum mycelia growth to the tune of 59.2% followed by B. licheniformis—ESR 26 (57.8%) and B. subtilis—ESR 24 (54.8%), respectively. The volatiles produced by bacteria not only inhibited the radial growth of mycelium but also suppressed the vertical expansion of mycelia and caused deformation in mycelia growth. The VOCs produced by 24 endophytic bacteria completely inhibited spore formation in C. falcatum culture. Profiling of antagonistic VOCs produced by bacterial strains ESR 7, ESR 24 and ESR 26 was done by head space-solid phase microextraction (SPME) coupled with gas chromatography mass spectral analysis. The analysis showed the presence of 63 compounds belonging to chemical groups of alcohols, esters, hydrocarbons, ketones, acids, amino acid, carbohydrates, ethers, aldehydes, amines and amides. Among the identified microbial volatiles, 6 compounds viz., acetic acid, methoxy-phenyl-oxime, octamethyl-cyclotetrasiloxane, 5,7-dimethyl-undecane, hexamethyl-cyclotrisiloxane and dodecane were reported in VOCs produced by all three bacteria. However, among 63 volatiles, only 31 were already reported to be produced by many bacteria and fungi and 11 compounds viz., acetic acid, hexanal, 2-ethyl-1-hexanol, undecane 5,7-dimethyl, undecane 3,7-dimethyl, 2-decanone, dodecane, 2-undecanone, 2-dodecanone, 1,2-Benzenedicarboxylic acid, diisooctyl ester and 2-methyl-hexadecanol were reported with antagonistic property against many plant pathogens. The study revealed that many VOCs produced by B. axarquiensis—ESR 7, B. subtilis—ESR 24 and B. licheniformis—ESR 26 play role in mediating antagonism against C. falcatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad, M., R. Ali, and S. Fasihi. 1986. Effect of different infection levels of red rot of sugarcane on cane weight and juice quality. Journal of Agricultural Research (Lahore) 24: 129–131.

    Google Scholar 

  • Ajilogba, C.F., and O.O. Babalola. 2019. GC–MS analysis of volatile organic compounds from Bambara groundnut rhizobacteria and their antibacterial properties. World Journal of Microbiology & Biotechnology 35: 83. https://doi.org/10.1007/s11274-019-2660-7.

    Article  CAS  Google Scholar 

  • Amaresan, N., V. Jayakumar, Krishna kumar, and N. Thajuddin. 2019. Biocontrol and plant growth-promoting ability of plant-associated bacteria from tomato (Lycopersicum esculentum) under field condition. Microbial Pathogenesis 136: 103713. https://doi.org/10.1016/j.micpath.2019.103713.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, D., G. Strobel, B. Geary, J. Sears, D. Ezra, O. Liarzi, and J. Coombs. 2010. Muscodor albus strain GBA, an endophytic fungus of Ginkgobiloba from United States of America, produces volatile antimicrobials. Mycology 1(3): 179–186. https://doi.org/10.1080/21501203.2010.506204.

    Article  CAS  Google Scholar 

  • Barber, C.A. 1901. Sugarcane disease in Godawari and Ganjam districts. Madras Department Land Records and Agricultural Bulletin 512(43): 181–194.

    Google Scholar 

  • Berg, G., A. Krechel, M. Ditz, R.A. Sikora, A. Ulrich, and J. Hallmann. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology 51: 215–229.

    CAS  PubMed  Google Scholar 

  • Bojke, A., C. Tkaczuk, P. Stepnowski, and M. Gołębiowski. 2018. Comparison of volatile compounds released by entomopathogenic fungi. Microbiological Research 214: 129–136. https://doi.org/10.1016/j.micres.2018.06.011.

    Article  CAS  PubMed  Google Scholar 

  • Che, J., B. Liu, G. Liu, Q. Chen, and J. Lan. 2017. Volatile organic compounds produced by Lysinibacillus sp. FJAT-4748 possess antifungal activity against Colletotrichum acutatum. Biocontrol Science and Technology 27: 1349–1362. https://doi.org/10.1080/09583157.2017.1397600.

    Article  Google Scholar 

  • Chen, H., X. Xiang, W. Jun, W. Lijun, Z. Zheng, and Y. Zengliang. 2008. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea. Biotechnology Letters 30: 919–923. https://doi.org/10.1007/s10529-007-9626-9.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., K. Gozzi, F. Yan, and Y. Chai. 2015. Acetic acid acts as a volatile signal to stimulate bacterial biofilm formation. mBio 6(3): e00392. https://doi.org/10.1128/mBio.00392-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chona, B.L. 1980. Red rot of sugarcane and sugar industry- a review. Indian Phytopathology 33: 191–206.

    Google Scholar 

  • Chona, B.L., and G.W. Padwick. 1942. More light on the red rot epidemic. Indian Farming 3: 70–73.

    Google Scholar 

  • Compant, S., C. Clĕment, and A. Sessitsch. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry 42: 669–678.

    CAS  Google Scholar 

  • Crespo, R., N. Pedrini, Juárez, and G.M. Dal Bello. 2008. Volatile organic compounds released by the entomopathogenic fungus Beauveria bassiana. Microbiological Research 163: 148–151. https://doi.org/10.1016/j.micres.2006.03.013.

    Article  CAS  PubMed  Google Scholar 

  • Daungfu, O., S. Youpensuk, and S. Lumyong. 2019. Endophytic bacteria isolated from citrus plants for biological control of citrus canker in lime plants. Tropical Life Sciences Research 30(1): 73–88. https://doi.org/10.21315/tlsr2019.30.1.5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farag, M.A., C.M. Ryu, L.W. Sumner, and P.W. Paré. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67: 2262–2268. https://doi.org/10.1016/j.phytochem.2006.07.021.

    Article  CAS  PubMed  Google Scholar 

  • Fernando, W.G.D., R. Ramarathnam, A.S. Krishnamoorthy, and S.C. Savchuk. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology & Biochemistry 37: 955–964.

    CAS  Google Scholar 

  • Gao, H., P. Li, X. Xu, Q. Zeng, and W. Guan. 2018. Research on volatile organic compounds from Bacillus subtilis cf-3: Biocontrol effects on fruit fungal pathogens and dynamic changes during fermentation. Frontiers in Microbiology 9: 456. https://doi.org/10.3389/fmicb.2018.00456.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giorgio, A., A. De Stradis, P. Lo Cantore, and N.S. Iacobellis. 2015. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum. Frontiers in Microbiology 6: 1056. https://doi.org/10.3389/fmicb.2015.01056.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu, Y.-Q., M.-H. Mo, J.P. Zhou, C.-S. Zou, and K.-Q. Zhang. 2007. Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biology & Biochemistry 39: 2567–2575.

    CAS  Google Scholar 

  • Guevara-Avendaño, E., A.A. Bejarano-Bolívar, A.L. Kiel-Martínez, M. Ramírez-Vázquez, A. Méndez-Bravo, E.A. von Wobeser, D. Sánchez-Rangel, J.A. Guerrero-Analco, A. Eskalen, and F. Reverchon. 2019. Avocado rhizobacteria emit volatile organic compounds with antifungal activity against Fusarium solani, Fusarium sp. associated with Kuroshio shot hole borer, and Colletotrichum gloeosporioides. Microbiological Research 219: 74–83. https://doi.org/10.1016/j.micres.2018.11.009.

    Article  CAS  PubMed  Google Scholar 

  • Guneser, O., A. Demirkol, Y.K. Yuceer, S.O. Togayc, M.I. Hosoglub, and M. Elibol. 2017. Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis. Brazilian Journal of Microbiology 48: 275–285.

    CAS  PubMed  Google Scholar 

  • Hanif, S., B. Stodart, S. Savocchia, and G. Ash. 2019. Profiling volatile organic compounds produced by Bacillus species with biocontrol properties against Leptosphaeria maculans. pp. 265. Abstract from Australasian Plant Pathology Society Conference, Melbourne, Australia.

  • Hassan, M.N., S. Afghan, and F.Y. Hafeez. 2011. Biological control of red rot in sugarcane by native pyoluteorin-producing Pseudomonas putida strain NH-50 under field conditions and its potential modes of action. Pest Management Science 67(9): 1147–1154. https://doi.org/10.1002/ps.2165.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, M.N., S. Afghan, and F.Y. Hafeez. 2012. Biological suppression of sugarcane red rot by Bacillus spp. under field conditions. Journal of Plant Pathology 94(2): 325–329.

    Google Scholar 

  • Heenan-Daly, D., S.L.S. Velivelli, and B.D. Prestwich. 2019. The role of rhizobacterial volatile organic compounds in a second green revolution—the story so far. In Field crops: Sustainable management by PGPR. Sustainable development and biodiversity 23, ed. D.K. Maheshwari and S. Dheeman, 191–220. Cham: Springer. https://doi.org/10.1007/978-3-030-30926-8_8.

    Chapter  Google Scholar 

  • Herrera, S.D., C. Grossi, M. Zawoznik, and M.D. Groppa. 2016. Wheat seeds harbour bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiological Research 186–187: 37–43. https://doi.org/10.1016/j.micres.2016.03.002.

    Article  CAS  Google Scholar 

  • Hoon, K.S., H.S. Cho, H. Cheong, C.M. Ryu, J.F. Kim, and S.H. Park. 2007. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.). Journal of Microbial Biotechnology 17(1): 96–103.

    Google Scholar 

  • Hsu, J.C. 1996. Multiple comparisons: Theory and methods. London: Chapman & Hall.

    Google Scholar 

  • Jayakumar, V., A. Ramesh Sundar, and R. Viswanathan. 2019. Biological suppression of sugarcane smut with endophytic bacteria. Sugar Tech 21(4): 653–660. https://doi.org/10.1007/s12355-018-0684-1.

    Article  CAS  Google Scholar 

  • Jayakumar, V., R. Bhaskaran, and S. Tsushima. 2007. Potential of plant extracts in combination with bacterial antagonist treatment as biocontrol agent of red rot of sugarcane. Canadian Journal of Microbiology 53(2): 196–206.

    CAS  PubMed  Google Scholar 

  • Jeleń, H.H. 2003. Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Letters in Applied Microbiology 36: 263–267.

    PubMed  Google Scholar 

  • Joshi, D., J. Gupta, A. Mishra, M. Upadhyaya, S.K. Holkar, and P. Singh. 2019a. Distribution, composition and bioactivity of endophytic Trichoderma spp. associated with Sugarcane. Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences 89: 1189–1200. https://doi.org/10.1007/s40011-018-1036-3.

    Article  CAS  Google Scholar 

  • Joshi, D., P. Singh, S.K. Holkar, and S. Kumar. 2019b. Trichoderma-mediated suppression of red rot of sugarcane under field conditions in subtropical India. Sugar Tech 21(3): 496–504. https://doi.org/10.1007/s12355-018-0624-0.

    Article  CAS  Google Scholar 

  • Kanchiswamy, C.N., M. Malnoy, and M.E. Maffei. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Frontiers in Plant Science 6: 151. https://doi.org/10.3389/fpls.2015.00151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Katoch, M., K. Bindu, S. Phull, and M.K. Verma. 2017. An endophytic Fusarium sp. isolated from Monarda citriodora produces the industrially important plant-like volatile organic compound hexanal. Microbiology 163: 840–847. https://doi.org/10.1099/mic.0.000479.

    Article  CAS  PubMed  Google Scholar 

  • Kirtikar, and H.S. Verma. 1962. A review on effect of sugarcane diseases on yield and juice qualities in Uttar Pradesh. Indian Sugar 12: 103–108.

    Google Scholar 

  • Kloepper, J.W., and C.M. Ryu. 2006. Bacterial endophytes as elicitors of induced systemic resistance. In Microbial root endophytes. Soil Biology, vol. 9, ed. B.J.E. Schulz, C.J.C. Boyle and T.N. Sieber, 33–52. Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-33526-9_3.

    Chapter  Google Scholar 

  • Kudalkar, P., G. Strobel, S. Riyaz-Ul-Hassan, B. Geary, and J. Sears. 2012. Muscodor sutura, a novel endophytic fungus with volatile antibiotic activities. Mycoscience 53: 319–325. https://doi.org/10.1007/s10267-011-0165-9.

    Article  CAS  Google Scholar 

  • Kumar, A., and Satyavir. 1998. Evaluation of biological control agents against red rot (Colletotrichum falcatum) of sugarcane. Tests of Agrochemicals and Cultivars 19: 72–73.

    Google Scholar 

  • Kumar, S., V. Kumar, and V. Kumar. 2000. Deterioration in juice quality of sugarcane due to pathotypes of red rot pathogen. Annals of Agri-Bio Research 5: 31–35.

    Google Scholar 

  • Lee, S., M. Yap, G. Behringer, R. Hung, and J.W. Bennett. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biology and Biotechnology 3: 7. https://doi.org/10.1186/s40694-016-0025-7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, W., W. Mu, Z. Bingyu, and L. Feng. 2008. Antifungal activities and components of VOCs produced by Bacillus subtilis G8. Current Research in Bacteriology 1(1): 28–34. https://doi.org/10.3923/crb.2008.28.34.

    Article  CAS  Google Scholar 

  • Liu, X.-M., and H. Zhang. 2015. The effects of bacterial volatile emissions on plant abiotic stress tolerance. Frontiers in Plant Science 6: 774. https://doi.org/10.3389/fpls.2015.00774.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodewyckx, C., J. Vangronsveld, F. Porteous, E.R.B. Moore, S. Taghavi, M. Mezgeay, and D.V.D. Lelie. 2002. Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences 21(6): 583–606. https://doi.org/10.1080/0735-260291044377.

    Article  Google Scholar 

  • Mallaiah, B., E. Rajinikanth, and M. Muthamilan. 2016. Isolation and identification of secondary metabolites produced by Trichoderma viride inhibiting the growth of Fusarium in Carnatum (desm.) sacc. incitant of crossandra wilt. The Bioscan 11(3): 1525–1529.

    CAS  Google Scholar 

  • Massawe, V.C., A. Hanif, A. Farzand, D.K. Mburu, S.O. Ochola, L. Wu, H.A.S. Tahir, Q. Gu, H. Wu, and X. Gao. 2018. Compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotiana sclerotiorum. Phytopathology 108: 1373–1385.

    CAS  PubMed  Google Scholar 

  • Nagendran, K., G. Karthikeyan, P. Mohammed Faisal, P. Kalaiselvi, M. Raveendran, K. Prabakar, and T. Raguchander. 2014. Exploiting endophytic bacteria for the management of sheath blight disease in rice. Biological Agriculture & Horticulture 30(1): 8–23. https://doi.org/10.1080/01448765.2013.841099.

    Article  Google Scholar 

  • Padmanaban, P., D. Mohanraj, R. Viswanathan, M.M. Rao, N. Prakasam, R. Jothi, and K.C. Alexander. 1996. Differential interaction of sugarcane clones to pathotypes of Colletotrichum falcatum Went. Sugar Cane 4: 16–20.

    Google Scholar 

  • Patel, P., R. Shah, B. Joshi, K. Ramar, and N. Amaresan. 2019. Molecular identification and biocontrol activity of sugarcane rhizosphere bacteria against red rot pathogen Colletotrichum falcatum. Biotechnology Reports 21: e00317. https://doi.org/10.1016/j.btre.2019.e00317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rath, M., T.R. Mitchell, and S.E. Gold. 2018. Volatiles produced by Bacillus mojavensis RRC101 act as plant growth modulators and are strongly culture-dependent. Microbiological Research 208: 76–84.

    CAS  PubMed  Google Scholar 

  • Raza, W., J. Yuan, N. Ling, Q. Huang, and Q. Shen. 2015. Production of volatile organic compounds by an antagonistic strain Paenibacillus polymyxa WR-2 in the presence of root exudates and organic fertilizer and their antifungal activity against Fusarium oxysporum f. sp. niveum. Biological Control 80: 89–95. https://doi.org/10.1016/j.biocontrol.2014.09.004.

    Article  CAS  Google Scholar 

  • Ryu, C.M., M.A. Farag, C.H. Hu, M.S. Reddy, J.W. Kloepper, and P.W. Pare. 2004. Bacterial volatiles induce systemic resistance in arabidopsis. Plant Physiology 134: 1017–1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Satyavir, A. Kumar, K. Raj, and K.S. Virk. 2002. Red rot of sugarcane: The research scene in Haryana. In Sugarcane crop management, ed. S.B. Singh, G.P. Rao and S. Eswaramoorthy, 109–126. Houston: SCI TECH Publishing, LLC.

    Google Scholar 

  • Satyavir, 2003. Red rot of sugarcane current scenario. Indian Phytopathology 56: 245–254.

    Google Scholar 

  • Schulz, S., and J.S. Dickschat. 2007. Bacterial volatiles: The smell of small organism. Natural Product Reports 24: 814–842.

    CAS  PubMed  Google Scholar 

  • Selim, H.M.M., N.M. Gomaa, and A.M.M. Essa. 2017. Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: Ceratobasidiaceae) damping-off disease in cotton seedlings. Biocontrol Science and Technology 27: 81–95. https://doi.org/10.1080/09583157.2016.1258452.

    Article  Google Scholar 

  • Sharma, G., J. Singh, A. Arya, and S.R. Sharma. 2017. Biology and management of sugarcane red rot: A review. Plant Archives 17: 775–784.

    Google Scholar 

  • Sheoran, N., A.V. Nadakkakath, V. Munjal, A. Kundu, K. Subaharan, V. Venugopal, S. Rajamma, S.J. Eapen, and A. Kumar. 2015. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiological Research 173: 66–78.

    CAS  PubMed  Google Scholar 

  • Sileshi, G.W. 2012. A critique of current trends in the statistical analysis of seed germination and viability data. Seed Science Research 22: 145–159.

    Google Scholar 

  • Singh, N. 2008. Sustainable management of red rot disease of sugarcane. Indian Sugar 8: 21–30.

    Google Scholar 

  • Singh, O.N., and K.S. Waraitch. 1977. Metabolic changes induced by Colletotrichum falcatum Went. in sugarcane. Sugarcane Pathologists’ Newsletter 19: 7–9.

    Google Scholar 

  • Singh, V., R.L. Srivastava, S.K. Awasthi, and B.B. Joshi. 2008. Biological control of red rot disease of sugarcane through Trichoderma harzianum and Trichoderma viride. Indian Phytopathology 61: 486–491.

    Google Scholar 

  • Strobel, G. 2006. Muscodor albus and its biological promise. Journal of Industrial Microbiology and Biotechnology 33: 514–522. https://doi.org/10.1007/s10295-006-0090-7.

    Article  CAS  PubMed  Google Scholar 

  • Tahir, H.A.S., Q. Gu, H. Wu, Y. Niu, R. Huo, and X. Gao. 2017. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Scientific Reports 7: 40481. https://doi.org/10.1038/srep4048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tait, E., J.D. Perry, S.P. Stanforth, and J.R. Dean. 2014. Identification of volatile organic compounds produced by bacteria using HS-SPME-GC–MS. Journal of Chromatographic Science 52: 363–373.

    CAS  PubMed  Google Scholar 

  • Thode, H.C. 2002. Testing for normality. New York: Marcel Dekkers.

    Google Scholar 

  • Ting, A.S.Y., S.W. Mah, and C.S. Tee. 2009. Prevalence of endophytes antagonistic towards Fusarium oxysporum f. sp. cubense race 4 in various plants. European Journal of Sustainable Agriculture 3: 399–406.

    Google Scholar 

  • Vallejo, N.B., D.A.C. Pozosb, J.L.M. Villanuevaa, M.R. Vázqueza, G.L.C. Villarnovoc, J.A.G. Analcoa, L.P.P. Martínezb, and F. Reverchon. 2020. Forest tree associated bacteria for potential biological control of Fusarium solani and of Fusarium kuroshium, causal agent of Fusarium dieback. Microbiological Research 235: 126440. https://doi.org/10.1016/j.micres.2020.126440.

    Article  CAS  Google Scholar 

  • Viswanathan, R., and G.P. Rao. 2011. Disease scenario and management of major sugarcane diseases in India. Sugar Tech 13: 336–353. https://doi.org/10.1007/s12355-011-0102-4.

    Article  CAS  Google Scholar 

  • Viswanathan, R., and K.C. Alexander. 1997. Management of sugarcane diseases. Indian Journal of Sugarcane Technology 12: 37–48.

    Google Scholar 

  • Viswanathan, R., and R. Samiyappan. 1999. Red rot disease of sugarcane: Major constraint for Indian sugar industry. Sugar Cane 5: 9–15.

    Google Scholar 

  • Viswanathan, R., and R. Samiyappan. 2000. Red rot disease in sugarcane: Challenges and prospects. Madras Agricultural Journal 87(10–12): 549–559.

    Google Scholar 

  • Viswanathan, R., and R. Samiyappan. 2002. Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Protection 21: 1–10.

    Google Scholar 

  • Xia, Y., S. DeBolt, J. Dreyer, D. Scott, and M.A. Williams. 2015. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in Plant Science 6: 490. https://doi.org/10.3389/fpls.2015.00490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, S., J. Liu, S. Gu, X. Chen, H. Jiang, and T. Ding. 2020. Antifungal activity of volatile compounds produced by endophytic Bacillus subtilis DZSY21 against Curvularia lunata. Annals of Microbiology 70: 2. https://doi.org/10.1186/s13213-020-01553-0.

    Article  CAS  Google Scholar 

  • Xing, M., L. Zheng, Y. Deng, D. Xu, P. Xi, M. Li, G. Kong, and Z. Jiang. 2018. Antifungal activity of natural volatile organic compounds against Litchi downy blight pathogen Peronophythora litchii. Molecules 23: 358. https://doi.org/10.3390/molecules23020358.

    Article  CAS  PubMed Central  Google Scholar 

  • Xu, F., W. Tao, and J. Sun. 2011. Identification of volatile compounds released by myxobacteria Sorangium cellulosum AHB103-1. African Journal of Microbiological Research 5: 353–358.

    CAS  Google Scholar 

  • Yadav, R.I. 2006. Research vision to manage red-rot disease of sugarcane in India. Sugar Tech 8: 99–100.

    Google Scholar 

  • Yuan, J., W. Raza, Q. Shen, and Q. Huang. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Applied and Environmental Microbiology 78: 5942–5944.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J.Y., X.Y. Zhao, and C.C. Dai. 2014. Antagonistic mechanisms of endophytic Pseudomonas fluorescens against Athelia rolfsii. Journal of Applied Microbiology 117: 1144–1158.

    CAS  PubMed  Google Scholar 

  • Zou, C.S., M.H. Mo, Y.Q. Gu, J.P. Zhou, and K.Q. Zhang. 2007. Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biology & Biochemistry 39: 2371–2379.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, ICAR-Sugarcane Breeding Institute for providing facilities. This study was done as part of ICAR-SBI fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jayakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakumar, V., Ramesh Sundar, A. & Viswanathan, R. Biocontrol of Colletotrichum falcatum with volatile metabolites produced by endophytic bacteria and profiling VOCs by headspace SPME coupled with GC–MS. Sugar Tech 23, 94–107 (2021). https://doi.org/10.1007/s12355-020-00891-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-020-00891-2

Keywords

Navigation