Skip to main content
Log in

Head-to-head comparison of diagnostic accuracy of stress-only myocardial perfusion imaging with conventional and cadmium-zinc telluride single-photon emission computed tomography in women with suspected coronary artery disease

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Breast attenuation may impact the diagnostic accuracy of stress myocardial perfusion imaging (MPI) with single-photon emission computed tomography (SPECT). We compared the performance of conventional (C)-SPECT and cadmium-zinc-telluride (CZT)-SPECT systems in women with low-intermediate likelihood of coronary artery disease (CAD).

Methods and Results

A total of 109 consecutive women underwent stress-optional rest MPI by both C-SPECT and CZT-SPECT. In the overall study population, a weak albeit significant correlation between total perfusion defect (TPD) measured by C-SPECT and CZT-SPECT was observed (r = 0.38, P < .001) and at Bland-Altman analysis the mean difference in TPD (C-SPECT minus CZT-SPECT) was 2.40% (P < .001). Overall concordance of semi-quantitative diagnostic performance between C-SPECT and CZT-SPECT was observed in 52 (48%) women with a κ value of 0.09. Normalcy rate was significantly higher using CZT-SPECT compared to C-SPECT (P < .001). Machine learning analysis performed through the implementation of J48 algorithm proved that CZT-SPECT has higher sensitivity, specificity, and accuracy than C-SPECT.

Conclusions

In women with low-intermediate likelihood of CAD, there is a poor concordance of diagnostic performance between C-SPECT and CZT-SPECT, and CZT-SPECT allows better normalcy rate detection compared to C-SPECT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

SPECT:

Single-photon emission computed tomography

MPI:

Myocardial perfusion imaging

CAD:

Coronary artery disease

C:

Conventional

CZT:

Cadmium-zinc-telluride

ECG:

Electrocardiography

SSS:

Summed stress score

TPD:

Total perfusion defect

LV:

Left ventricular

References

  1. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/ SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging. J Am Coll Cardiol 2009;53:2201-29.

    Article  Google Scholar 

  2. Green R, Cantoni V, Petretta M, Acampa W, Panico M, Buongiorno P, et al. Negative predictive value of stress myocardial perfusion imaging and coronary computed tomography angiography: A meta-analysis. J Nucl Cardiol 2018;25:1588-97.

    Article  Google Scholar 

  3. Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Ben-Haim S, et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging 2008;1:156-63.

    Article  Google Scholar 

  4. Slomka PJ, Patton JA, Berman DS, Germano G. Advances in technical aspects of myocardial perfusion SPECT imaging. J Nucl Cardiol 2009;16:255-76.

    Article  Google Scholar 

  5. Berman DS, Kang X, Tamarappoo B, Wolak A, Hayes SW, Nakazato R, et al. Stress thallium-201/rest technetium-99 m sequential dual isotope high-speed myocardial perfusion imaging. JACC Cardiovasc Imaging 2009;2:273-82.

    Article  Google Scholar 

  6. Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S, et al. Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: Multicenter comparison with standard dual detector cameras. J Nucl Cardiol 2009;16:927-34.

    Article  Google Scholar 

  7. Tanaka H, Chikamori T, Hida S, Uchida K, Igarashi Y, Yokoyama T, et al. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera. Circ J 2013;77:1009-17.

    Article  CAS  Google Scholar 

  8. Verger A, Djaballah W, Fourquet N, Rouzet F, Koehl G, Imbert L, et al. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols. Eur J Nucl Med Mol Imaging 2013;40:331-40.

    Article  CAS  Google Scholar 

  9. Gimelli A, Bottai M, Quaranta A, Giorgetti A, Genovesi D, Marzullo P. Gender differences in the evaluation of coronary artery disease with a cadmium-zinc telluride camera. Eur J Nucl Med Mol Imaging 2013;40:1542-8.

    Article  CAS  Google Scholar 

  10. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979;300:1350-8.

    Article  CAS  Google Scholar 

  11. Diamond GA, Staniloff HM, Forrester JS, Pollock BH, Swan HJ, et al. Computer assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease. J Am Coll Cardiol 1983;1:444-55.

    Article  CAS  Google Scholar 

  12. Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, European Association of Nuclear Medicine (EANM), et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 2015;2015:1929-40.

    Article  Google Scholar 

  13. Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation 2013;128:873-934.

    Article  Google Scholar 

  14. Acampa W, Petretta M, Daniele S, Del Prete G, Assante R, Zampella E, et al. Incremental prognostic value of stress myocardial perfusion imaging in asymptomatic diabetic patients. Atherosclerosis 2013;227:307-12.

    Article  CAS  Google Scholar 

  15. Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high sensitivity rapid acquisition single photon cardiac imaging camera. J Nucl Med 2009;50:635-43.

    Article  Google Scholar 

  16. Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: Technical principles and reproducibility. J Nucl Med 2000;41:712-9.

    CAS  PubMed  Google Scholar 

  17. Slomka PJ, Nishina H, Berman DS, Kang X, Friedman JD, Hayes SW, et al. Automatic quantification of myocardial perfusion stress-rest change: A new measure of ischemia. J Nucl Med 2004;45:183-91.

    PubMed  Google Scholar 

  18. Nappi C, Gaudieri V, Acampa W, Assante R, Zampella E, Mainolfi CG, et al. Comparison of left ventricular shape by gated SPECT imaging in diabetic and nondiabetic patients with normal myocardial perfusion: A propensity score analysis. J Nucl Cardiol 2018;25:394-403.

    Article  Google Scholar 

  19. Acampa W, Petretta M, Florimonte L, di Santolo MS, Cuocolo A. Sestamibi SPECT in the detection of myocardial viability in patients with chronic ischemic left ventricular dysfunction: Comparison between visual and quantitative analysis. J Nucl Cardiol 2000;7:406-13.

    Article  CAS  Google Scholar 

  20. Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307-10.

    Article  CAS  Google Scholar 

  21. Sharma N, Bansal K. Comparative study of data mining tools. JoADMS 2015;2:35-41.

    CAS  Google Scholar 

  22. Warr WA. Scientific workflow systems: Pipeline Pilot and KNIME. J Comput Aided Mol Des 2012;26:801-4.

    Article  CAS  Google Scholar 

  23. Dietz C, Berthold MR. KNIME for open-source bioimage analysis: A tutorial. In: Focus on bio-image informatics. Berlin: Springer; 2016. p. 179-97.

  24. Rajmohan K, Paramasivam I, Sathya Narayan S. Prediction and diagnosis of cardiovascular disease: A critical survey. In: 2014 World Congress on Computing and Communication Technologies (WCCCT). IEEE; 2014. p. 246-51

  25. Quinlan JR. C4.5: Programs for machine learning. Amsterdam: Elsevier; 2014.

    Google Scholar 

  26. Kohavi R. A Study of cross-validation and bootstrap for accuracy estimation and model selection In: IJCAI ‘95 proceedings of the 14th international joint conference on artificial intelligence 1995;2:1137-45.

  27. Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull 1979;86:420-8.

    Article  CAS  Google Scholar 

  28. Doukky R, Rahaby M, Alyousef T, Vashistha R, Chawla D, Amin AP. Soft tissue attenuation patterns associated with supine acquisition SPECT myocardial perfusion imaging: A descriptive study. Open Cardiovasc Med J 2012;6:33-7.

    Article  Google Scholar 

  29. Araujo W, DePuey EG, Kamran M, Undavia M, Friedman M. Artifactual reverse distribution pattern in myocardial perfusion SPECT with technetium-99m sestamibi. J Nucl Cardiol 2000;7:633-8.

    Article  CAS  Google Scholar 

  30. Mieres JH, Shaw LJ, Hendel RC, Miller DD, Bonow RO, Berman DS, et al. A report of the American Society of Nuclear Cardiology Task Force on women and heart disease (Writing Group on perfusion imaging in women). J Nucl Cardiol 2003;10:95-101.

    Article  Google Scholar 

  31. Wolak A, Slomka PJ, Fish MB, Lorenzo S, Berman DS, Germano G. Quantitative diagnostic performance of myocardial perfusion SPECT with attenuation correction in women. J Nucl Med 2008;49:915-22.

    Article  Google Scholar 

  32. Liu CJ, Cheng JS, Chen YC, Huang YH, Yen RF. A performance comparison of novel cadmium-zinc-telluride camera and conventional SPECT/CT using anthropomorphic torso phantom and water bags to simulate soft tissue and breast attenuation. Ann Nucl Med 2015;29:342-50.

    Article  Google Scholar 

  33. Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, et al. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: Quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 2010;55:1965-74.

    Article  Google Scholar 

  34. Bienenstock EA, Ennis M. The effect of object size on the sensitivity of single photon emission computed tomography: Comparison of two CZT cardiac cameras and an Anger scintillation camera. EJNMMI Phys 2014;1:97.

    Article  Google Scholar 

  35. Duvall WL, Slomka PJ, Gerlach JR, Sweeny JM, Baber U, Croft LB, et al. High-efficiency SPECT MPI: Comparison of automated quantification, visual interpretation, and coronary angiography. J Nucl Cardiol 2013;20:763-73.

    Article  Google Scholar 

  36. Wackers FJ. Science, art, and artifacts: How important is quantification for the practicing physician interpreting myocardial perfusion studies? J Nucl Cardiol 1994;1:S109-17.

    Article  CAS  Google Scholar 

  37. Berman DS, Kang X, Van Train KF, Lewin HC, Cohen I, Areeda J, et al. Comparative prognostic value of automatic quantitative analysis versus semiquantitative visual analysis of exercise myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol 1998;32:1987-95.

    Article  CAS  Google Scholar 

  38. Taillefer R, DePuey EG, Udelson JE, Beller GA, Latour Y, Reeves F. Comparative diagnostic accuracy of Tl-201 and Tc-99m sestamibi SPECT imaging (perfusion and ECG-gated SPECT) in detecting coronary artery disease in women. J Am Coll Cardiol 1997;29:69-77.

    Article  CAS  Google Scholar 

  39. Smanio PE, Watson DD, Segalla DL, Vinson EL, Smith WH, Beller GA. Value of gating of technetium-99m sestamibi single-photon emission computed tomographic imaging. J Am Coll Cardiol 1997;30:1687-92.

    Article  CAS  Google Scholar 

  40. Bailliez A, Lairez O, Merlin C, Piriou N, Legallois D, Blaire T, et al. Left ventricular function assessment using 2 different cadmium-zinc-telluride cameras compared with a γ-camera with cardiofocal collimators: Dynamic cardiac phantom study and clinical validation. J Nucl Med 2016;57:1370-5.

    Article  CAS  Google Scholar 

  41. Cochet H, Bullier E, Gerbaud E, Durieux M, Godbert Y, Lederlin M, et al. Absolute quantification of left ventricular global and regional function at nuclear MPI using ultrafast CZT SPECT: Initial validation versus cardiac MR. J Nucl Med 2013;54:556-63.

    Article  Google Scholar 

  42. Giorgetti A, Masci PG, Marras G, Rustamova YK, Gimelli A, Genovesi D, et al. Gated SPECT evaluation of left ventricular function using a CZT camera and a fast low-dose clinical protocol: Comparison to cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging 2013;40:1869-75.

    Article  Google Scholar 

Download references

Disclosure

T. Mannarino, R. Assante, C. Ricciardi, E. Zampella, C. Nappi, V. Gaudieri, C.G. Mainolfi, E. Di Vaia, M. Petretta, M. Cesarelli, A. Cuocolo and W. Acampa declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanda Acampa MD, PhD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mannarino, T., Assante, R., Ricciardi, C. et al. Head-to-head comparison of diagnostic accuracy of stress-only myocardial perfusion imaging with conventional and cadmium-zinc telluride single-photon emission computed tomography in women with suspected coronary artery disease. J. Nucl. Cardiol. 28, 888–897 (2021). https://doi.org/10.1007/s12350-019-01789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-019-01789-7

Keywords

Navigation