Skip to main content
Log in

The role of nuclear cardiac imaging in risk stratification of sudden cardiac death

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Sudden cardiac death (SCD) represents a significant portion of all cardiac deaths. Current guidelines focus mainly on left ventricular ejection fraction (LVEF) as the main criterion for SCD risk stratification and management. However, LVEF alone lacks both sensitivity and specificity in stratifying patients. Recent research has provided interesting data which supports a greater role for advanced cardiac imaging in risk stratification and patient management. In this article, we will focus on nuclear cardiac imaging, including left ventricular function assessment, myocardial perfusion imaging, myocardial blood flow quantification, metabolic imaging, and neurohormonal imaging. We will discuss how these can be used to better understand SCD and better stratify patient with both ischemic and non-ischemic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CFR:

Coronary flow reserve

CS:

Cardiac sarcoidosis

DCM:

Dilated cardiomyopathy

HCM:

Hypertrophic cardiomyopathy

H/M:

Heart-to-mediastinum ratio

MBF:

Myocardial blood flow

MPI:

Myocardial perfusion imaging

SDS:

Sum difference score

SRS:

Sum rest score

SSS:

Sum stress score

References

  1. Zheng Z-J, Croft JB, Giles WH, Mensah GA. Sudden cardiac death in the United States, 1989 to 1998. Circulation 2001;104:2158-63.

    Article  CAS  PubMed  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: A report from the American Heart Association. Circulation 2015;131:e29-322.

    Article  PubMed  Google Scholar 

  3. Myerburg RJ, Mitrani R, Interian A, Castellanos A. Interpretation of outcomes of antiarrhythmic clinical trials: Design features and population impact. Circulation 1998;97:1514-21.

    Article  CAS  PubMed  Google Scholar 

  4. Deyell MW, Krahn AD, Goldberger JJ. Sudden cardiac death risk stratification. Circ Res 2015;116:1907-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hayashi M, Shimizu W, Albert CM. The spectrum of epidemiology underlying sudden cardiac death. Circ Res 2015;116:1887-906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zipes DP, Wellens HJ. Sudden cardiac death. Circulation 1998;98:2334-51.

    Article  CAS  PubMed  Google Scholar 

  7. Myerburg RJ. Sudden cardiac death: Epidemiology, causes, and mechanisms. Cardiology 1987;74:2-9.

    Article  PubMed  Google Scholar 

  8. Tracy CM, Epstein AE, Darbar D, DiMarco JP, Dunbar SB, Estes NAM, et al. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2012;60:1297-313.

    Article  PubMed  Google Scholar 

  9. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC) Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 2015;36:2793-867.

    Article  PubMed  Google Scholar 

  10. Stecker EC, Vickers C, Waltz J, Socoteanu C, John BT, Mariani R, et al. Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction. Two-year findings from the oregon sudden unexpected death study. J Am Coll Cardiol 2006;47:1161-6.

    Article  PubMed  Google Scholar 

  11. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002;346:877-83.

    Article  PubMed  Google Scholar 

  12. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005;352:225-37.

    Article  CAS  PubMed  Google Scholar 

  13. Moss AJ, Greenberg H, Case RB, Zareba W, Hall WJ, Brown MW, et al. Long-term clinical course of patients after termination of ventricular tachyarrhythmia by an implanted defibrillator. Circulation 2004;110:3760-5.

    Article  PubMed  Google Scholar 

  14. Bertini M, Schalij MJ, Bax JJ, Delgado V. Emerging role of multimodality imaging to evaluate patients at risk for sudden cardiac death. Circ Cardiovasc Imaging 2012;5:525-35.

    Article  PubMed  Google Scholar 

  15. Olshausen KV, Witt T, Pop T, Treese N, Bethge K-P, Meyer J. Sudden cardiac death while wearing a Holter monitor. Am J Cardiol 1991;67:381-6.

    Article  CAS  PubMed  Google Scholar 

  16. Thomsen PEB, Jons C, Raatikainen MJP, Joergensen RM, Hartikainen J, Virtanen V, et al. Long-term recording of cardiac arrhythmias with an implantable cardiac monitor in patients with reduced ejection fraction after acute myocardial infarction the cardiac arrhythmias and risk stratification after acute myocardial infarction (CARISMA) study. Circulation 2010;122:1258-64.

    Article  Google Scholar 

  17. Kuck KH, Cappato R, Siebels J, Rüppel R. Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from cardiac arrest: The Cardiac Arrest Study Hamburg (CASH). Circulation 2000;102:748-54.

    Article  CAS  PubMed  Google Scholar 

  18. Connolly SJ, Gent M, Roberts RS, Dorian P, Roy D, Sheldon RS, et al. Canadian implantable defibrillator study (CIDS): A randomized trial of the implantable cardioverter defibrillator against amiodarone. Circulation 2000;101:1297-302.

    Article  CAS  PubMed  Google Scholar 

  19. McAnulty J, Halperin B, Kron J, Larsen G, Rait M, Swenson R, et al. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med 1997;337:1576-84.

    Article  Google Scholar 

  20. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res 2004;95:754-63.

    Article  CAS  PubMed  Google Scholar 

  21. Luqman N, Sung RJ, Wang C-L, Kuo C-T. Myocardial ischemia and ventricular fibrillation: Pathophysiology and clinical implications. Int J Cardiol 2007;119:283-90.

    Article  PubMed  Google Scholar 

  22. Zipes DP, Rubart M. Neural modulation of cardiac arrhythmias and sudden cardiac death. Heart Rhythm 2006;3:108-13.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 2000;101:1960-9.

    Article  CAS  PubMed  Google Scholar 

  24. Risk stratification and survival after myocardial infarction. N Engl J Med 1983;309:331-6.

    Article  Google Scholar 

  25. Gradman A, Deedwania P, Cody R, Massie B, Packer M, Pitt B, et al. Predictors of total mortality and sudden death in mild to moderate heart failure. Captopril-Digoxin Study Group. J Am Coll Cardiol 1989;14:564-70; discussion 571-572.

    Article  CAS  PubMed  Google Scholar 

  26. Curtis JP, Sokol SI, Wang Y, Rathore SS, Ko DT, Jadbabaie F, et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol 2003;42:736-42.

    Article  PubMed  Google Scholar 

  27. Buxton AE, Lee KL, Fisher JD, Josephson ME, Prystowsky EN, Hafley G. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N Engl J Med 1999;341:1882-90.

    Article  CAS  PubMed  Google Scholar 

  28. Dickstein K, Vardas PE, Auricchio A, Daubert J-C, Linde C, McMurray J, et al. 2010 Focused Update of ESC Guidelines on device therapy in heart failure: An update of the 2008 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure and the 2007 ESC guidelines for cardiac and resynchronization therapy Developed with the special contribution of the Heart Failure Association and the European Heart Rhythm Association. Eur Heart J 2010;31:2677-87.

    Article  PubMed  Google Scholar 

  29. Epstein AE, DiMarco JP, Ellenbogen KA, Estes NAM, Freedman RA, Gettes LS, et al. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): Developed in Collaboration With the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation 2008;117:e350-408.

    Article  PubMed  Google Scholar 

  30. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA Guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013;128:e240-327.

    Article  PubMed  Google Scholar 

  31. Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: A report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): Developed in Collaboration With the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 2006;114:e385-484.

    Article  PubMed  Google Scholar 

  32. Hachamovitch R, Rozanski A, Hayes SW, Thomson LEJ, Germano G, Friedman JD, et al. Predicting therapeutic benefit from myocardial revascularization procedures: Are measurements of both resting left ventricular ejection fraction and stress-induced myocardial ischemia necessary? J Nucl Cardiol 2006;13:768-78.

    Article  PubMed  Google Scholar 

  33. Lertsburapa K, Ahlberg AW, Bateman TM, Katten D, Volker L, Cullom SJ, et al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. J Nucl Cardiol 2008;15:745-53.

    Article  PubMed  Google Scholar 

  34. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging. J Am Coll Cardiol 2009;53:2201-29.

    Article  PubMed  Google Scholar 

  35. Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH, DePuey EG, et al. ASNC imaging guidelines for nuclear cardiology procedures. J Nucl Cardiol 2009;16:164.

    Article  Google Scholar 

  36. Harel F, Finnerty V, Grégoire J, Thibault B, Marcotte F, Ugolini P, et al. Gated blood-pool SPECT versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction. J Nucl Cardiol 2010;17:427-34.

    Article  PubMed  Google Scholar 

  37. Akinboboye O, Nichols K, Wang Y, Dim UR, Reichek N. Accuracy of radionuclide ventriculography assessed by magnetic resonance imaging in patients with abnormal left ventricles. J Nucl Cardiol 2005;12:418-27.

    Article  PubMed  Google Scholar 

  38. Schaefer WM, Lipke CSA, Standke D, Kühl HP, Nowak B, Kaiser H-J, et al. Quantification of left ventricular volumes and ejection fraction from gated 99mTc-MIBI SPECT: MRI validation and comparison of the Emory Cardiac Tool Box with QGS and 4D-MSPECT. J Nucl Med 2005;46:1256-63.

    PubMed  Google Scholar 

  39. Wackers FJ, Berger HJ, Johnstone DE, Goldman L, Reduto LA, Langou RA, et al. Multiple gated cardiac blood pool imaging for left ventricular ejection fraction: Validation of the technique and assessment of variability. Am J Cardiol 1979;43:1159-66.

    Article  CAS  PubMed  Google Scholar 

  40. Virmani R, Burke AP, Farb A. Sudden cardiac death. Cardiovasc Pathol 2001;10:275-82.

    Article  CAS  PubMed  Google Scholar 

  41. Huikuri HV, Castellanos A, Myerburg RJ. Sudden death due to cardiac arrhythmias. N Engl J Med 2001;345:1473-82.

    Article  CAS  PubMed  Google Scholar 

  42. Kelly P, Ruskin JN, Vlahakes GJ, Buckley MJ, Freeman CS, Garan H. Surgical coronary revascularization in survivors of prehospital cardiac arrest: Its effect on inducible ventricular arrhythmias and long-term survival. J Am Coll Cardiol 1990;15:267-73.

    Article  CAS  PubMed  Google Scholar 

  43. Holmes DR, Davis KB, Mock MB, Fisher LD, Gersh BJ, Killip T, et al. The effect of medical and surgical treatment on subsequent sudden cardiac death in patients with coronary artery disease: a report from the Coronary Artery Surgery Study. Circulation 1986;73:1254-63.

    Article  PubMed  Google Scholar 

  44. van der Burg AEB. Impact of viability, ischemia, scar tissue, and revascularization on outcome after aborted sudden death. Circulation 2003;108:1954-9.

    Article  PubMed  Google Scholar 

  45. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death differential stratification for risk of cardiac death and myocardial infarction. Circulation 1998;97:535-43.

    Article  CAS  PubMed  Google Scholar 

  46. Piccini JP, Horton JR, Shaw LK, Al-Khatib SM, Lee KL, Iskandrian AE, et al. Single-photon emission computed tomography myocardial perfusion defects are associated with an increased risk of all-cause death, cardiovascular death, and sudden cardiac death. Circ Cardiovasc Imaging 2008;1:180-8.

    Article  PubMed  Google Scholar 

  47. Piccini JP, Starr AZ, Horton JR, Shaw LK, Lee KL, Al-Khatib SM, et al. Single-photon emission computed tomography myocardial perfusion imaging and the risk of sudden cardiac death in patients with coronary disease and left ventricular ejection fraction > 35%. J Am Coll Cardiol 2010;56:206-14.

    Article  PubMed  Google Scholar 

  48. Paganelli F, Barnay P, Imbert-Joscht I, Gelisse R, Saadjian A, Mundler O, et al. Influence of residual myocardial ischaemia on induced ventricular arrhythmias following a first acute myocardial infarction. Eur Heart J 2001;22:1931-7.

    Article  CAS  PubMed  Google Scholar 

  49. McArdle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease? A systematic review and meta-analysis. J Am Coll Cardiol 2012;60:1828-37.

    Article  Google Scholar 

  50. Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: A bivariate meta-analysis. Circ Cardiovasc Imaging 2012;5:700-7.

    Article  PubMed  Google Scholar 

  51. Dorbala S, Di Carli MF. Cardiac PET perfusion: Prognosis, risk stratification, and clinical management. Semin Nucl Med 2014;44:344-57.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dorbala S, Di Carli MF, Beanlands RS, Merhige ME, Williams BA, Veledar E, et al. Prognostic value of stress myocardial perfusion positron emission tomography. J Am Coll Cardiol 2013;61:176-84.

    Article  PubMed  Google Scholar 

  53. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.

    Article  PubMed  Google Scholar 

  54. Rijnierse MT, de Haan S, Harms HJ, Robbers LF, Wu L, Danad I, et al. Impaired hyperemic myocardial blood flow is associated with inducibility of ventricular arrhythmia in ischemic cardiomyopathy. Circ Cardiovasc Imaging 2014;7:20-30.

    Article  PubMed  Google Scholar 

  55. De Bakker JM, Van Capelle FJ, Janse MJ, Wilde AA, Coronel R, Becker AE, et al. Reentry as a cause of ventricular tachycardia in patients with chronic ischemic heart disease: Electrophysiologic and anatomic correlation. Circulation 1988;77:589-606.

    Article  PubMed  Google Scholar 

  56. Bello D, Fieno DS, Kim RJ, Pereles FS, Passman R, Song G, et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 2005;45:1104-8.

    Article  PubMed  Google Scholar 

  57. Machecourt J, Longère P, Fagret D, Vanzetto G, Wolf JE, Polidori C, et al. Prognostic value of thallium-201 single-photon emission computed tomographic myocardial perfusion imaging according to extent of myocardial defect: Study in 1,926 patients with foilow-up at 33 months. J Am Coll Cardiol 1994;23:1096-106.

    Article  CAS  PubMed  Google Scholar 

  58. Morishima I, Sone T, Tsuboi H, Mukawa H, Uesugi M, Morikawa S, et al. Risk stratification of patients with prior myocardial infarction and advanced left ventricular dysfunction by gated myocardial perfusion SPECT imaging. J Nucl Cardiol 2008;15:631-7.

    Article  PubMed  Google Scholar 

  59. Di Carli MF, Maddahi J, Rokhsar S, Schelbert HR, Bianco-Batlles D, Brunken RC, et al. Long-term survival of patients with coronary artery disease and left ventricular dysfunction: Implications for the role of myocardial viability assessment in management decisions. J Thorac Cardiovasc Surg 1998;116:997-1004.

    Article  PubMed  Google Scholar 

  60. Di Carli MF, Davidson M, Little R, Khanna S, Mody FV, Brunken RC, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527-33.

    Article  PubMed  Google Scholar 

  61. Desideri A, Cortigiani L, Christen AI, Coscarelli S, Gregori D, Zanco P, et al. The extent of perfusion-F18-fluorodeoxyglucose positron emission tomography mismatch determines mortality in medically treated patients with chronic ischemic left ventricular dysfunction. J Am Coll Cardiol 2005;46:1264-9.

    Article  PubMed  Google Scholar 

  62. Beanlands RSB, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease. J Am Coll Cardiol 2007;50:2002-12.

    Article  PubMed  Google Scholar 

  63. Uebleis C, Hellweger S, Laubender RP, Becker A, Sohn H-Y, Lehner S, et al. The amount of dysfunctional but viable myocardium predicts long-term survival in patients with ischemic cardiomyopathy and left ventricular dysfunction. Int J Cardiovasc Imaging 2013;29:1645-53.

    Article  PubMed  Google Scholar 

  64. Ling LF, Marwick TH, Flores DR, Jaber WA, Brunken RC, Cerqueira MD, et al. Identification of therapeutic benefit from revascularization in patients with left ventricular systolic dysfunction: Inducible ischemia versus hibernating myocardium. Circ Cardiovasc Imaging 2013;6:363-72.

    Article  PubMed  Google Scholar 

  65. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 2011;364:1617-25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mielniczuk LM, Beanlands RS. Does imaging-guided selection of patients with ischemic heart failure for high risk revascularization improve identification of those with the highest clinical benefit? Imaging-guided selection of patients with ischemic heart failure for high-risk revascularization improves identification of those with the highest clinical benefit. Circ Cardiovasc Imaging 2012;5:262-70; discussion 270.

    Article  PubMed  Google Scholar 

  67. Nakajo M, Shapiro B, Copp J, Kalff V, Gross MD, Sisson JC, et al. The normal and abnormal distribution of the adrenomedullary imaging agent m-[I-131]iodobenzylguanidine (I-131 MIBG) in man: Evaluation by scintigraphy. J Nucl Med 1983;24:672-82.

    CAS  PubMed  Google Scholar 

  68. Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart: What have we learnt clinically? Eur J Nucl Med 2000;27:1-6.

    Article  CAS  PubMed  Google Scholar 

  69. Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffioli L, et al. 131I/123I-metaiodobenzylguanidine (mIBG) scintigraphy: Procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2010;37:2436-46.

    Article  PubMed  Google Scholar 

  70. Fallavollita JA, Canty JM. Dysinnervated but viable myocardium in ischemic heart disease. J Nucl Cardiol 2010;17:1107-15.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sasano T, Abraham MR, Chang K-C, Ashikaga H, Mills KJ, Holt DP, et al. Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 2008;51:2266-75.

    Article  PubMed  Google Scholar 

  72. Brunner-La Rocca HP, Esler MD, Jennings GL, Kaye DM. Effect of cardiac sympathetic nervous activity on mode of death in congestive heart failure. Eur Heart J 2001;22:1136-43.

    Article  CAS  PubMed  Google Scholar 

  73. Bax JJ, Kraft O, Buxton AE, Fjeld JG, Parízek P, Agostini D, et al. 123 I-mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: A prospective multicenter pilot study. Circ Cardiovasc Imaging 2008;1:131-40.

    Article  PubMed  Google Scholar 

  74. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212-21.

    Article  PubMed  Google Scholar 

  75. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BLF. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: A systematic review. Eur Heart J 2008;29:1147-59.

    Article  PubMed  Google Scholar 

  76. Narula J, Gerson M, Thomas GS, Cerqueira MD, Jacobson AF. 123I-MIBG imaging for prediction of mortality and potentially fatal events in heart failure: The ADMIRE-HFX study. J Nucl Med 2015;56:1011-8.

    Article  PubMed  Google Scholar 

  77. Boogers MJ, Borleffs CJW, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, et al. Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 2010;55:2769-77.

    Article  PubMed  Google Scholar 

  78. Kawai T, Yamada T, Tamaki S, Morita T, Furukawa Y, Iwasaki Y, et al. Usefulness of cardiac meta-iodobenzylguanidine imaging to identify patients with chronic heart failure and left ventricular ejection fraction < 35% at low risk for sudden cardiac death. Am J Cardiol 2015;115:1549-54.

    Article  CAS  PubMed  Google Scholar 

  79. Shah AM, Bourgoun M, Narula J, Jacobson AF, Solomon SD. Influence of ejection fraction on the prognostic value of sympathetic innervation imaging with iodine-123 MIBG in heart failure. JACC Cardiovasc Imaging 2012;5:1139-46.

    Article  PubMed  Google Scholar 

  80. Tamaki S, Yamada T, Okuyama Y, Morita T, Sanada S, Tsukamoto Y, et al. Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: Results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 2009;53:426-35.

    Article  CAS  PubMed  Google Scholar 

  81. Kasama S, Toyama T, Sumino H, Nakazawa M, Matsumoto N, Sato Y, et al. Prognostic value of serial cardiac 123I-MIBG imaging in patients with stabilized chronic heart failure and reduced left ventricular ejection fraction. J Nucl Med 2008;49:907-14.

    Article  PubMed  Google Scholar 

  82. Minardo JD, Tuli MM, Mock BH, Weiner RE, Pride HP, Wellman HN, et al. Scintigraphic and electrophysiological evidence of canine myocardial sympathetic denervation and reinnervation produced by myocardial infarction or phenol application. Circulation 1988;78:1008-19.

    Article  CAS  PubMed  Google Scholar 

  83. Simões MV, Barthel P, Matsunari I, Nekolla SG, Schömig A, Schwaiger M, et al. Presence of sympathetically denervated but viable myocardium and its electrophysiologic correlates after early revascularised, acute myocardial infarction. Eur Heart J 2004;25:551-7.

    Article  PubMed  Google Scholar 

  84. Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: Supersensitivity that may be arrhythmogenic. Circulation 1987;75:877-87.

    Article  CAS  PubMed  Google Scholar 

  85. Noordzij W, Slart RHJA. PET imaging of the autonomic myocardial function: Methods and interpretation. Clin Transl Imaging 2015;3:365-72.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rosenspire KC, Haka MS, Van Dort ME, Jewett DM, Gildersleeve DL, Schwaiger M, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: A false transmitter agent for heart neuronal imaging. J Nucl Med 1990;31:1328-34.

    CAS  PubMed  Google Scholar 

  87. Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22:368-75.

    Article  CAS  PubMed  Google Scholar 

  88. Matsunari I, Schricke U, Bengel FM, Haase H-U, Barthel P, Schmidt G, et al. Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 2000;101:2579-85.

    Article  CAS  PubMed  Google Scholar 

  89. Canty JM. Hibernating myocardium: Chronically adapted to ischemia but vulnerable to sudden death. Circ Res 2004;94:1142-9.

    Article  CAS  PubMed  Google Scholar 

  90. Luisi AJ Jr, Suzuki G, DeKemp R, Haka MS, Toorongian SA, Canty Jr JM, et al. Regional 11C-hydroxyephedrine retention in hibernating myocardium: Chronic inhomogeneity of sympathetic innervation in the absence of infarction. J Nucl Med 2005;46:1368-74.

    CAS  PubMed  Google Scholar 

  91. Pietilä M, Malminiemi K, Ukkonen H, Saraste M, Någren K, Lehikoinen P, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 2001;28:373-6.

    Article  PubMed  Google Scholar 

  92. Fallavollita JA, Heavey BM, Luisi AJ, Michalek SM, Baldwa S, Mashtare TL, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 2014;63:141-9.

    Article  PubMed  Google Scholar 

  93. Matsunari I, Aoki H, Nomura Y, Takeda N, Chen W-P, Taki J, et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging 2010;3:595-603.

    Article  PubMed  Google Scholar 

  94. Rischpler C, Fukushima K, Isoda T, Holt D, Dannals R, Bengel F, et al. Comparison of the sympathetic nerve imaging tracers hydroxyephedrine (HED) and metaiodobenzylguanidine (MIBG) in rat hearts. J Nucl Med 2011;52:332.

    Google Scholar 

  95. Luisi AJ, Fallavollita JA, Suzuki G, Canty JM. Spatial inhomogeneity of sympathetic nerve function in hibernating myocardium. Circulation 2002;106:779-81.

    Article  PubMed  Google Scholar 

  96. Tamburro P, Wilber D. Sudden death in idiopathic dilated cardiomyopathy. Am Heart J 1992;124:1035-45.

    Article  CAS  PubMed  Google Scholar 

  97. Kasama S, Toyama T, Kaneko Y, Iwasaki T, Sumino H, Kumakura H, et al. Relationship between late ventricular potentials and myocardial 123I-metaiodobenzylguanidine scintigraphy in patients with dilated cardiomyopathy with mild to moderate heart failure: Results of a prospective study of sudden death events. Eur J Nucl Med Mol Imaging 2012;39:1056-64.

    Article  PubMed  Google Scholar 

  98. Manrique A, Bernard M, Hitzel A, Bauer F, Ménard J-F, Sabatier R, et al. Prognostic value of sympathetic innervation and cardiac asynchrony in dilated cardiomyopathy. Eur J Nucl Med Mol Imaging 2008;35:2074-81.

    Article  PubMed  Google Scholar 

  99. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 2002;105:186-93.

    Article  PubMed  Google Scholar 

  100. Majmudar MD, Murthy VL, Shah RV, Kolli S, Mousavi N, Foster CR, et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging 2015;16:900-9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rijnierse MT, Allaart CP, de Haan S, Harms HJ, Huisman MC, Wu L, et al. Sympathetic denervation is associated with microvascular dysfunction in non-infarcted myocardium in patients with cardiomyopathy. Eur Heart J Cardiovasc Imaging 2015;16:788-98.

    Article  PubMed  Google Scholar 

  102. Maron BJ, Spirito P, Shen W-K, Haas TS, Formisano F, Link MS, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA 2007;298:405-12.

    CAS  PubMed  Google Scholar 

  103. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014;35:2733-79.

    Article  PubMed  Google Scholar 

  104. Sorajja P, Chareonthaitawee P, Ommen SR, Miller TD, Hodge DO, Gibbons RJ. Prognostic utility of single-photon emission computed tomography in adult patients with hypertrophic cardiomyopathy. Am Heart J 2006;151:426-35.

    Article  PubMed  Google Scholar 

  105. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349:1027-35.

    Article  CAS  PubMed  Google Scholar 

  106. Hiasa G, Hamada M, Saeki H, Ogimoto A, Ohtsuka T, Hara Y, et al. Cardiac sympathetic nerve activity can detect congestive heart failure sensitively in patients with hypertrophic cardiomyopathy. Chest 2004;126:679-86.

    Article  PubMed  Google Scholar 

  107. Matsuo S, Nakamura Y, Tsutamoto T, Kinoshita M. Impairments of myocardial sympathetic activity may reflect the progression of myocardial damage or dysfunction in hypertrophic cardiomyopathy. J Nucl Cardiol 2002;9:407-12.

    Article  PubMed  Google Scholar 

  108. Terai H, Shimizu M, Ino H, Yamaguchi M, Hayashi K, Sakata K, et al. Cardiac sympathetic nerve activity in patients with hypertrophic cardiomyopathy with malignant ventricular tachyarrhythmias. J Nucl Cardiol 2003;10:304-10.

    Article  PubMed  Google Scholar 

  109. Glaudemans AWJM, Slart RHJA, Zeebregts CJ, Veltman NC, Tio RA, Hazenberg BPC, et al. Nuclear imaging in cardiac amyloidosis. Eur J Nucl Med Mol Imaging 2009;36:702-14.

    Article  CAS  PubMed  Google Scholar 

  110. Grogan M, Dispenzieri A. Natural history and therapy of AL cardiac amyloidosis. Heart Fail Rev 2015;20:155-62.

    Article  CAS  PubMed  Google Scholar 

  111. Mohty D, Damy T, Cosnay P, Echahidi N, Casset-Senon D, Virot P, et al. Cardiac amyloidosis: Updates in diagnosis and management. Arch Cardiovasc Dis 2013;106:528-40.

    Article  PubMed  Google Scholar 

  112. Hongo M, Urushibata K, Kai R, Takahashi W, Koizumi T, Uchikawa S, et al. Iodine-123 metaiodobenzylguanidine scintigraphic analysis of myocardial sympathetic innervation in patients with AL (primary) amyloidosis. Am Heart J 2002;144:122-9.

    Article  CAS  PubMed  Google Scholar 

  113. Bokhari S, Shahzad R, Castaño A, Maurer MS. Nuclear imaging modalities for cardiac amyloidosis. J Nucl Cardiol 2014;21:175-84.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Antoni G, Lubberink M, Estrada S, Axelsson J, Carlson K, Lindsjö L, et al. In vivo visualization of amyloid deposits in the heart with 11C-PIB and PET. J Nucl Med 2013;54:213-20.

    Article  CAS  PubMed  Google Scholar 

  115. Baughman RP, Teirstein AS, Judson MA, Rossman MD, Yeager H, Bresnitz EA, et al. Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med 2001;164:1885-9.

    Article  CAS  PubMed  Google Scholar 

  116. Mehta D, Lubitz SA, Frankel Z, Wisnivesky JP, Einstein AJ, Goldman M, et al. Cardiac involvement in patients with sarcoidosis: Diagnostic and prognostic value of outpatient testing. Chest 2008;133:1426-35.

    Article  PubMed  Google Scholar 

  117. Nery PB, Mc Ardle BA, Redpath CJ, Leung E, Lemery R, Dekemp R, et al. Prevalence of cardiac sarcoidosis in patients presenting with monomorphic ventricular tachycardia. Pacing Clin Electrophysiol 2014;37:364-74.

    Article  PubMed  Google Scholar 

  118. Kandolin R, Lehtonen J, Kupari M. Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults. Circ Arrhythm Electrophysiol 2011;4:303-9.

    Article  PubMed  Google Scholar 

  119. Nery PB, Beanlands RS, Nair GM, Green M, Yang J, McArdle BA, et al. Atrioventricular block as the initial manifestation of cardiac sarcoidosis in middle-aged adults. J Cardiovasc Electrophysiol 2014;25:875-81.

    Article  PubMed  Google Scholar 

  120. Lynch JP, Hwang J, Bradfield J, Fishbein M, Shivkumar K, Tung R. Cardiac involvement in sarcoidosis: Evolving concepts in diagnosis and treatment. Semin Respir Crit Care Med 2014;35:372-90.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Aggarwal NR, Snipelisky D, Young PM, Gersh BJ, Cooper LT, Chareonthaitawee P. Advances in imaging for diagnosis and management of cardiac sarcoidosis. Eur Heart J Cardiovasc Imaging 2015;16:949-58.

    Article  PubMed  Google Scholar 

  122. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014;63:329-36.

    Article  PubMed  Google Scholar 

  123. Kron J, Sauer W, Mueller G, Schuller J, Bogun F, Sarsam S, et al. Outcomes of patients with definite and suspected isolated cardiac sarcoidosis treated with an implantable cardiac defibrillator. J Interv Card Electrophysiol 2015;43:55-64.

    Article  Google Scholar 

  124. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014;11:1305-23.

    Article  PubMed  Google Scholar 

  125. Betensky BP, Tschabrunn CM, Zado ES, Goldberg LR, Marchlinski FE, Garcia FC, et al. Long-term follow-up of patients with cardiac sarcoidosis and implantable cardioverter-defibrillators. Heart Rhythm 2012;9:884-91.

    Article  PubMed  Google Scholar 

  126. Kron J, Sauer W, Schuller J, Bogun F, Crawford T, Sarsam S, et al. Efficacy and safety of implantable cardiac defibrillators for treatment of ventricular arrhythmias in patients with cardiac sarcoidosis. Europace 2013;15:347-54.

    Article  PubMed  Google Scholar 

  127. Tung R, Bauer B, Schelbert H, Lynch JP, Auerbach M, Gupta P, et al. Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: The potential role of occult inflammation in arrhythmogenesis. Heart Rhythm 2015;12:2488-98.

    Article  PubMed  Google Scholar 

  128. Wichter T, Hindricks G, Lerch H, Bartenstein P, Borggrefe M, Schober O, et al. Regional myocardial sympathetic dysinnervation in arrhythmogenic right ventricular cardiomyopathy. An analysis using 123I-meta-iodobenzylguanidine scintigraphy. Circulation 1994;89:667-83.

    Article  CAS  PubMed  Google Scholar 

  129. Wichter T, Schäfers M, Rhodes CG, Borggrefe M, Lerch H, Lammertsma AA, et al. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: Quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation 2000;101:1552-8.

    Article  CAS  PubMed  Google Scholar 

  130. Paul M, Wichter T, Kies P, Gerss J, Wollmann C, Rahbar K, et al. Cardiac sympathetic dysfunction in genotyped patients with arrhythmogenic right ventricular cardiomyopathy and risk of recurrent ventricular tachyarrhythmias. J Nucl Med 2011;52:1559-65.

    Article  CAS  PubMed  Google Scholar 

  131. Wichter T, Matheja P, Eckardt L, Kies P, Schäfers K, Schulze-Bahr E, et al. Cardiac autonomic dysfunction in Brugada syndrome. Circulation 2002;105:702-6.

    Article  PubMed  Google Scholar 

  132. Kies P, Wichter T, Schäfers M, Paul M, Schäfers KP, Eckardt L, et al. Abnormal myocardial presynaptic norepinephrine recycling in patients with Brugada syndrome. Circulation 2004;110:3017-22.

    Article  CAS  PubMed  Google Scholar 

  133. Kostopoulou A, Koutelou M, Theodorakis G, Theodorakos A, Livanis E, Maounis T, et al. Disorders of the autonomic nervous system in patients with Brugada syndrome: A pilot study. J Cardiovasc Electrophysiol 2010;21:773-80.

    PubMed  Google Scholar 

  134. Werner RA, Rischpler C, Onthank D, Lapa C, Robinson S, Samnick S, et al. Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195: Comparison with 11C-hydroxyephedrine and 123I-MIBG. J Nucl Med 2015;56:1429-33.

    Article  CAS  PubMed  Google Scholar 

  135. Higuchi T, Yousefi BH, Kaiser F, Gartner F, Rischpler C, Reder S, et al. Assessment of the 18F-labeled PET tracer LMI1195 for imaging norepinephrine handling in rat hearts. J Nucl Med 2013;54:1142-6.

    Article  CAS  PubMed  Google Scholar 

  136. Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease: Executive summary a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 2012;126:3097-137.

    Article  PubMed  Google Scholar 

  137. Members Task Force, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C, et al. ESC guidelines on the management of stable coronary artery disease: The task force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 2013;2013:2949-3003.

    Google Scholar 

  138. McMurray JJV, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 2012;33:1787-847.

    Article  PubMed  Google Scholar 

  139. Mancini GBJ, Gosselin G, Chow B, Kostuk W, Stone J, Yvorchuk KJ, et al. Canadian Cardiovascular Society guidelines for the diagnosis and management of stable ischemic heart disease. Can J Cardiol 2014;30:837-49.

    Article  PubMed  Google Scholar 

  140. O’Meara E, Mielniczuk LM, Wells GA, deKemp RA, Klein R, Coyle D, et al. Alternative imaging modalities in ischemic heart failure (AIMI-HF) IMAGE HF Project I-A: Study protocol for a randomized controlled trial. Trials 2013;14:218.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

RSB is a career investigator supported by the Heart and Stroke Foundation of Ontario, a Tier 1 Research Chair supported by the University of Ottawa, and the University of Ottawa Heart Institute Vered Chair in Cardiology. DJ is a Cardiac Imaging Fellow at the University of Ottawa Heart Institute supported by a grant from the CHUM and CHUM Foundation. JK is supported by the Centre of Excellence of Cardiovascular and Metabolic Disease, Academy of Finland.

Disclosures

RSB is or has been a consultant for and receives grant funding from GE Healthcare, Lantheus Medical Imaging, and Jubilant DraxImage. TDR receives research grant funding from GE Healthcare, Advanced Accelerator Applications, and AstraZeneca. BJC holds the Saul and Edna Goldfarb Chair in Cardiac Imaging Research. He receives research support from GE Healthcare and educational support from TeraRecon Inc. JK has been a consultant of Lantheus Medical Imaging and received a grant from CardiRad Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Juneau MD, FRCPC.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juneau, D., Erthal, F., Chow, B.J.W. et al. The role of nuclear cardiac imaging in risk stratification of sudden cardiac death. J. Nucl. Cardiol. 23, 1380–1398 (2016). https://doi.org/10.1007/s12350-016-0599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0599-8

Keywords

Navigation