Skip to main content
Log in

Transplant allograft vasculopathy: Role of multimodality imaging in surveillance and diagnosis

  • CME Article Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Cardiac allograft vasculopathy (CAV) is a challenging long-term complication of cardiac transplantation and remains a leading long-term cause of graft failure, re-transplantation, and death. CAV is an inflammatory vasculopathy distinct from traditional atherosclerotic coronary artery disease. Historically, the surveillance and diagnosis of CAV has been dependent on serial invasive coronary angiography with intravascular imaging. Although commonly practiced, angiography is not without significant limitations. Technological advances have provided sophisticated imaging techniques for CAV assessment. It is now possible to assess the vascular lumen, vessel wall characteristics, absolute blood flow, perfusion reserve, myocardial contractile function, and myocardial metabolism and injury in a noninvasive, expeditious manner with little risk. The current article will review key imaging modalities for the surveillance, diagnosis, and prognosis of CAV and discuss coronary physiology of transplanted hearts with emphasis on the clinical implications for provocative and vasodilator stress testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CAV:

Cardiac allograft vasculopathy

PCI:

Percutaneous coronary intervention

CABG:

Coronary artery bypass grafting

SPECT:

Single-photon emission computed tomography myocardial perfusion imaging

PET:

Positron emission tomography

CFR:

Coronary flow reserve

CAG:

Coronary angiography

IVUS:

Intravascular ultrasound

OCT:

Optical coherence tomography

MBG:

Myocardial blush grade

2DE:

Two-dimensional echocardiography

DSE:

Dobutamine stress echocardiography

CMR:

Cardiac magnetic resonance imaging

PPV:

Positive predictive value

NPV:

Negative predictive value

VEGF:

Vascular endothelial growth factor

References

  1. Lund LH, Edwards LB, Kucheryavaya AY, Dipchand AI, Benden C, Christie JD, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Official Adult Heart Transplant Report—2013; focus theme: Age. J Heart Lung Transplant 2013;32:951-64.

    Article  PubMed  Google Scholar 

  2. Stehlik J, Edwards LB, Kucheryavaya AY, Benden C, Christie JD, Dipchand AI, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report—2012. J Heart Lung Transplant 2012;31:1052-64.

    Article  PubMed  Google Scholar 

  3. Rahmani M, Cruz RP, Granville DJ, McManus BM. Allograft vasculopathy versus atherosclerosis. Circ Res 2006;99:801-15.

    Article  CAS  PubMed  Google Scholar 

  4. Tona F, Marra MP, Fedrigo M, Famoso G, Bellu R, Thiene G, et al. Recent developments on coronary microvasculopathy after heart transplantation: A new target in the therapy of cardiac allograft vasculopathy. Curr Vasc Pharmacol 2012;10:206-15.

    Article  CAS  PubMed  Google Scholar 

  5. Pober JS, Jane-wit D, Qin L, Tellides G. Interacting mechanisms in the pathogenesis of cardiac allograft vasculopathy. Arterioscler Thromb Vasc Biol 2014;34:1609-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tune JD, Gorman MW, Feigl EO. Matching coronary blood flow to myocardial oxygen consumption. J Appl Physiol 2004;97:404-15.

    Article  PubMed  Google Scholar 

  7. Perez-Terzic CM. Exercise in cardiovascular diseases. PM R 2012;4:867-73.

    Article  PubMed  Google Scholar 

  8. Gutierrez E, Flammer AJ, Lerman LO, Elizaga J, Lerman A, Fernandez-Aviles F. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J 2013;34:3175-81.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nytroen K, Gullestad L. Effect of exercise in heart transplant recipients. Am J Transplant 2013;13:527.

    Article  CAS  PubMed  Google Scholar 

  10. Nytroen K, Rustad LA, Erikstad I, Aukrust P, Ueland T, Lekva T, et al. Effect of high-intensity interval training on progression of cardiac allograft vasculopathy. J Heart Lung Transplant 2013;32:1073-80.

    Article  PubMed  Google Scholar 

  11. Bernardi L, Radaelli A, Passino C, Falcone C, Auguadro C, Martinelli L, et al. Effects of physical training on cardiovascular control after heart transplantation. Int J Cardiol 2007;118:356-62.

    Article  PubMed  Google Scholar 

  12. Fish RD, Nabel EG, Selwyn AP, Ludmer PL, Mudge GH, Kirshenbaum JM, et al. Responses of coronary arteries of cardiac transplant patients to acetylcholine. J Clin Invest 1988;81:21-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hollenberg SM, Klein LW, Parrillo JE, Scherer M, Burns D, Tamburro P, et al. Coronary endothelial dysfunction after heart transplantation predicts allograft vasculopathy and cardiac death. Circulation 2001;104:3091-6.

    Article  CAS  PubMed  Google Scholar 

  14. Davis SF, Yeung AC, Meredith IT, Charbonneau F, Ganz P, Selwyn AP, et al. Early endothelial dysfunction predicts the development of transplant coronary artery disease at 1 year posttransplant. Circulation 1996;93:457-62.

    Article  CAS  PubMed  Google Scholar 

  15. Valantine HA. Cardiac allograft vasculopathy: Central role of endothelial injury leading to transplant “atheroma”. Transplantation 2003;76:891-9.

    Article  CAS  PubMed  Google Scholar 

  16. Petrakopoulou P, Kubrich M, Pehlivanli S, Meiser B, Reichart B, von Scheidt W, et al. Cytomegalovirus infection in heart transplant recipients is associated with impaired endothelial function. Circulation 2004;110:207-12.

    Article  Google Scholar 

  17. Sudhir K, MacGregor JS, DeMarco T, De Groot CJ, Taylor RN, Chou TM, et al. Cyclosporine impairs release of endothelium-derived relaxing factors in epicardial and resistance coronary arteries. Circulation 1994;90:3018-23.

    Article  CAS  PubMed  Google Scholar 

  18. Edwards BS, Hunt SA, Fowler MB, Valantine HA, Anderson LM, Lerman A. Effect of cyclosporine on plasma endothelin levels in humans after cardiac transplantation. Am J Cardiol 1991;67:782-4.

    Article  CAS  PubMed  Google Scholar 

  19. Diederich D, Skopec J, Diederich A, Dai FX. Cyclosporine produces endothelial dysfunction by increased production of superoxide. Hypertension 1994;23:957-61.

    Article  CAS  PubMed  Google Scholar 

  20. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S, et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant 2010;29:914-56.

    Article  PubMed  Google Scholar 

  21. St Goar FG, Pinto FJ, Alderman EL, Valantine HA, Schroeder JS, Gao SZ, et al. Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of “angiographically silent” intimal thickening. Circulation 1992;85:979-87.

    Article  CAS  PubMed  Google Scholar 

  22. Kobashigawa JA, Tobis JM, Starling RC, Tuzcu EM, Smith AL, Valantine HA, et al. Multicenter intravascular ultrasound validation study among heart transplant recipients: Outcomes after five years. J Am Coll Cardiol 2005;45:1532-7.

    Article  PubMed  Google Scholar 

  23. Tuzcu EM, Kapadia SR, Sachar R, Ziada KM, Crowe TD, Feng J, et al. Intravascular ultrasound evidence of angiographically silent progression in coronary atherosclerosis predicts long-term morbidity and mortality after cardiac transplantation. J Am Coll Cardiol 2005;45:1538-42.

    Article  PubMed  Google Scholar 

  24. Mehra MR, Ventura HO, Stapleton DD, Smart FW, Collins TC, Ramee SR. Presence of severe intimal thickening by intravascular ultrasonography predicts cardiac events in cardiac allograft vasculopathy. J Heart Lung Transplant 1995;14:632-9.

    CAS  PubMed  Google Scholar 

  25. Kobashigawa JA, Pauly DF, Starling RC, Eisen H, Ross H, Wang SS, et al. Cardiac allograft vasculopathy by intravascular ultrasound in heart transplant patients: Substudy from the Everolimus versus mycophenolate mofetil randomized, multicenter trial. JACC Heart Fail 2013;1:389-99.

    Article  PubMed  Google Scholar 

  26. Hernandez JM, de Prada JA, Burgos V, Sainz LF, Valls MF, Vilchez FG, et al. Virtual histology intravascular ultrasound assessment of cardiac allograft vasculopathy from 1 to 20 years after heart transplantation. J Heart Lung Transplant 2009;28:156-62.

    Article  PubMed  Google Scholar 

  27. Arora S, Erikstad I, Ueland T, Sigurdardottir V, Ekmehag B, Jansson K, et al. Virtual histology assessment of cardiac allograft vasculopathy following introduction of everolimus—Results of a multicenter trial. Am J Transplant 2012;12:2700-9.

    Article  CAS  PubMed  Google Scholar 

  28. Teuteberg JJ, Simon MA. Non-invasive screening for cardiac allograft vasculopathy: Go small or go home? J Heart Lung Transplant 2015;34:158-60.

    Article  PubMed  Google Scholar 

  29. Khandhar SJ, Yamamoto H, Teuteberg JJ, Shullo MA, Bezerra HG, Costa MA, et al. Optical coherence tomography for characterization of cardiac allograft vasculopathy after heart transplantation (OCTCAV study). J Heart Lung Transplant 2013;32:596-602.

    Article  PubMed  Google Scholar 

  30. Treasure CB, Vita JA, Ganz P, Ryan TJ Jr, Schoen FJ, Vekshtein VI, et al. Loss of the coronary microvascular response to acetylcholine in cardiac transplant patients. Circulation 1992;86:1156-64.

    Article  CAS  PubMed  Google Scholar 

  31. Mullins PA, Chauhan A, Sharples L, Cary NR, Large SR, Wallwork J, et al. Impairment of coronary flow reserve in orthotopic cardiac transplant recipients with minor coronary occlusive disease. Br Heart J 1992;68:266-71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weis M, Hartmann A, Olbrich HG, Hor G, Zeiher AM. Prognostic significance of coronary flow reserve on left ventricular ejection fraction in cardiac transplant recipients. Transplantation 1998;65:103-8.

    Article  CAS  PubMed  Google Scholar 

  33. Tona F, Osto E, Famoso G, Previato M, Fedrigo M, Vecchiati A, et al. Coronary microvascular dysfunction correlates with the new onset of cardiac allograft vasculopathy in heart transplant patients with normal coronary angiography. Am J Transplant 2015;15:1400-6.

    Article  CAS  PubMed  Google Scholar 

  34. Hofmann NP, Dickhaus H, Katus HA, Korosoglou G. Quantitative assessment of myocardial blush grade in patients with coronary artery disease and in cardiac transplant recipients. World J Cardiol 2014;6:1108-12.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Korosoglou G, Riedle N, Erbacher M, Dengler TJ, Zugck C, Rottbauer W, et al. Quantitative myocardial blush grade for the detection of cardiac allograft vasculopathy. Am Heart J 2010;159:643-51.

    Article  PubMed  Google Scholar 

  36. Hofmann NP, Voss A, Dickhaus H, Erbacher M, Doesch A, Ehlermann P, et al. Long-term outcome after heart transplantation predicted by quantitative myocardial blush grade in coronary angiography. Am J Transplant 2013;13:1491-502.

    Article  CAS  PubMed  Google Scholar 

  37. Thorn EM, de Filippi CR. Echocardiography in the cardiac transplant recipient. Heart Fail Clin 2007;3:51-67.

    Article  PubMed  Google Scholar 

  38. Estep JD, Shah DJ, Nagueh SF, Mahmarian JJ, Torre-Amione G, Zoghbi WA. The role of multimodality cardiac imaging in the transplanted heart. JACC Cardiovasc Imaging 2009;2:1126-40.

    Article  PubMed  Google Scholar 

  39. Hummel M, Dandel M, Knollmann F, Muller J, Knosalla C, Ewert R, et al. Long-term surveillance of heart-transplanted patients: Noninvasive monitoring of acute rejection episodes and transplant vasculopathy. Transplant Proc 2001;33:3539-42.

    Article  CAS  PubMed  Google Scholar 

  40. Clemmensen TS, Logstrup BB, Eiskjaer H, Poulsen SH. Evaluation of longitudinal myocardial deformation by 2-dimensional speckle-tracking echocardiography in heart transplant recipients: Relation to coronary allograft vasculopathy. J Heart Lung Transplant 2015;34:195-203.

    Article  PubMed  Google Scholar 

  41. Akosah KO, McDaniel S, Hanrahan JS, Mohanty PK. Dobutamine stress echocardiography early after heart transplantation predicts development of allograft coronary artery disease and outcome. J Am Coll Cardiol 1998;31:1607-14.

    Article  CAS  PubMed  Google Scholar 

  42. Spes CH, Klauss V, Mudra H, Schnaack SD, Tammen AR, Rieber J, et al. Diagnostic and prognostic value of serial dobutamine stress echocardiography for noninvasive assessment of cardiac allograft vasculopathy: A comparison with coronary angiography and intravascular ultrasound. Circulation 1999;100:509-15.

    Article  CAS  PubMed  Google Scholar 

  43. Bacal F, Moreira L, Souza G, Rodrigues AC, Fiorelli A, Stolf N, et al. Dobutamine stress echocardiography predicts cardiac events or death in asymptomatic patients long-term after heart transplantation: 4-year prospective evaluation. J Heart Lung Transplant 2004;23:1238-44.

    Article  PubMed  Google Scholar 

  44. Pollack A, Nazif T, Mancini D, Weisz G. Detection and imaging of cardiac allograft vasculopathy. JACC Cardiovasc Imaging 2013;6:613-23.

    Article  PubMed  Google Scholar 

  45. Eroglu E, D’hooge J, Sutherland GR, Marciniak A, Thijs D, Droogne W, et al. Quantitative dobutamine stress echocardiography for the early detection of cardiac allograft vasculopathy in heart transplant recipients. Heart 2008;94:e3.

    Article  CAS  PubMed  Google Scholar 

  46. Hacker M, Hoyer HX, Uebleis C, Ueberfuhr P, Foerster S, La FC, et al. Quantitative assessment of cardiac allograft vasculopathy by real-time myocardial contrast echocardiography: A comparison with conventional echocardiographic analyses and [Tc99 m]-sestamibi SPECT. Eur J Echocardiogr 2008;9:494-500.

    PubMed  Google Scholar 

  47. Sade LE, Eroglu S, Yuce D, Bircan A, Pirat B, Sezgin A, et al. Follow-up of heart transplant recipients with serial echocardiographic coronary flow reserve and dobutamine stress echocardiography to detect cardiac allograft vasculopathy. J Am Soc Echocardiogr 2014;27:531-9.

    Article  PubMed  Google Scholar 

  48. Ciliberto GR, Mangiavacchi M, Banfi F, Massa D, Danzi G, Cataldo G, et al. Coronary artery disease after heart transplantation: Non-invasive evaluation with exercise thallium scintigraphy. Eur Heart J 1993;14:226-9.

    Article  CAS  PubMed  Google Scholar 

  49. Elhendy A, Sozzi FB, van Domburg RT, Vantrimpont P, Valkema R, Krenning EP, et al. Accuracy of dobutamine tetrofosmin myocardial perfusion imaging for the noninvasive diagnosis of transplant coronary artery stenosis. J Heart Lung Transplant 2000;19:360-6.

    Article  CAS  PubMed  Google Scholar 

  50. Wu YW, Yen RF, Lee CM, Ho YL, Chou NK, Wang SS, et al. Diagnostic and prognostic value of dobutamine thallium-201 single-photon emission computed tomography after heart transplantation. J Heart Lung Transplant 2005;24:544-50.

    Article  PubMed  Google Scholar 

  51. Hacker M, Tausig A, Romuller B, Hoyer X, Klauss V, Stempfle U, et al. Dobutamine myocardial scintigraphy for the prediction of cardiac events after heart transplantation. Nucl Med Commun 2005;26:607-12.

    Article  PubMed  Google Scholar 

  52. Al-Mallah MH, Arida M, Garcia-Sayan E, Assal C, Zegarra GT, Czerska B, et al. Safety of adenosine pharmacologic stress myocardial perfusion imaging in orthotopic cardiac transplant recipients: A single center experience of 102 transplant patients. Int J Cardiovasc Imaging 2011;27:1105-11.

    Article  PubMed  Google Scholar 

  53. Cavalcante JL, Barboza J, Ananthasubramaniam K. Regadenoson is a safe and well-tolerated pharmacological stress agent for myocardial perfusion imaging in post-heart transplant patients. J Nucl Cardiol 2011;18:628-33.

    Article  PubMed  Google Scholar 

  54. Gupta B, Jacob D, Thompson R. Imaging in patients after cardiac transplantation and in patients with ventricular assist devices. J Nucl Cardiol 2015;22(4):617-38.

    Article  PubMed  Google Scholar 

  55. Ciliberto GR, Ruffini L, Mangiavacchi M, Parolini M, Sara R, Massa D, et al. Resting echocardiography and quantitative dipyridamole technetium-99 m sestamibi tomography in the identification of cardiac allograft vasculopathy and the prediction of long-term prognosis after heart transplantation. Eur Heart J 2001;22:964-71.

    Article  CAS  PubMed  Google Scholar 

  56. Lenihan DJ, Rosenbaum AF, Burwinkel P, Tseng CY, Bhat G, Wagoner L, et al. Prediction of human transplantation arteriopathy and coronary events with lung/heart count ratios during intravenous dipyridamole thallium-201 imaging. Am Heart J 1999;137:942-8.

    Article  CAS  PubMed  Google Scholar 

  57. Wenning C, Stypmann J, Papavassilis P, Sindermann J, Schober O, Hoffmeier A, et al. Left ventricular dilation and functional impairment assessed by gated SPECT are indicators of cardiac allograft vasculopathy in heart transplant recipients. J Heart Lung Transplant 2012;31:719-28.

    Article  PubMed  Google Scholar 

  58. Manrique A, Hitzel A, Vera P. Impact of photon energy recovery on the assessment of left ventricular volume using myocardial perfusion SPECT. J Nucl Cardiol 2004;11:312-7.

    Article  PubMed  Google Scholar 

  59. Miller CA, Chowdhary S, Ray SG, Sarma J, Williams SG, Yonan N, et al. Role of noninvasive imaging in the diagnosis of cardiac allograft vasculopathy. Circ Cardiovasc Imaging 2011;4:583-93.

    Article  PubMed  Google Scholar 

  60. Allen-Auerbach M, Schoder H, Johnson J, Kofoed K, Einhorn K, Phelps ME, et al. Relationship between coronary function by positron emission tomography and temporal changes in morphology by intravascular ultrasound (IVUS) in transplant recipients. J Heart Lung Transplant 1999;18:211-9.

    Article  CAS  PubMed  Google Scholar 

  61. Wu YW, Chen YH, Wang SS, Jui HY, Yen RF, Tzen KY, et al. PET assessment of myocardial perfusion reserve inversely correlates with intravascular ultrasound findings in angiographically normal cardiac transplant recipients. J Nucl Med 2010;51:906-12.

    Article  PubMed  Google Scholar 

  62. Kofoed KF, Czernin J, Johnson J, Kobashigawa J, Phelps ME, Laks H, et al. Effects of cardiac allograft vasculopathy on myocardial blood flow, vasodilatory capacity, and coronary vasomotion. Circulation 1997;95:600-6.

    Article  CAS  PubMed  Google Scholar 

  63. Preumont N, Berkenboom G, Vachiery J, Jansens J, Antoine M, Wikler D, et al. Early alterations of myocardial blood flow reserve in heart transplant recipients with angiographically normal coronary arteries. J Heart Lung Transplant 2000;19:538-45.

    Article  CAS  PubMed  Google Scholar 

  64. Mc Ardle BA, Davies RA, Chen L, Small GR, Ruddy TD, Dwivedi G, et al. Prognostic value of rubidium-82 positron emission tomography in patients after heart transplant. Circ Cardiovasc Imaging 2014;7:930-7.

    Article  PubMed  Google Scholar 

  65. Mohiaddin RH, Bogren HG, Lazim F, Keegan J, Gatehouse PD, Barbir M, et al. Magnetic resonance coronary angiography in heart transplant recipients. Coron Artery Dis 1996;7:591-7.

    Article  CAS  PubMed  Google Scholar 

  66. Nunoda S, Machida H, Sekikawa A, Shitakura K, Okajima K, Kubo Y, et al. Evaluation of cardiac allograft vasculopathy by multidetector computed tomography and whole-heart magnetic resonance coronary angiography. Circ J 2010;74:946-53.

    Article  PubMed  Google Scholar 

  67. Steen H, Merten C, Refle S, Klingenberg R, Dengler T, Giannitsis E, et al. Prevalence of different gadolinium enhancement patterns in patients after heart transplantation. J Am Coll Cardiol 2008;52:1160-7.

    Article  PubMed  Google Scholar 

  68. Korosoglou G, Osman NF, Dengler TJ, Riedle N, Steen H, Lehrke S, et al. Strain-encoded cardiac magnetic resonance for the evaluation of chronic allograft vasculopathy in transplant recipients. Am J Transplant 2009;9:2587-96.

    Article  CAS  PubMed  Google Scholar 

  69. Muehling OM, Wilke NM, Panse P, Jerosch-Herold M, Wilson BV, Wilson RF, et al. Reduced myocardial perfusion reserve and transmural perfusion gradient in heart transplant arteriopathy assessed by magnetic resonance imaging. J Am Coll Cardiol 2003;42:1054-60.

    Article  PubMed  Google Scholar 

  70. Muehling OM, Panse P, Jerosch-Herold M, Wilson BV, Wilson RF, Wilke NM, et al. Cardiac magnetic resonance perfusion imaging identifies transplant arteriopathy by a reduced endomyocardial resting perfusion. J Heart Lung Transplant 2005;24:1122-3.

    Article  PubMed  Google Scholar 

  71. Mirelis JG, Garcia-Pavia P, Cavero MA, Gonzalez-Lopez E, Echavarria-Pinto M, Pastrana M, et al. Magnetic resonance for noninvasive detection of microcirculatory disease associated with allograft vasculopathy: Intracoronary measurement validation. Rev Esp Cardiol (Engl Ed) 2014;68(7):571-8.

    Article  Google Scholar 

  72. Machida H, Nunoda S, Okajima K, Shitakura K, Sekikawa A, Kubo Y, et al. Magnetic resonance assessment of left ventricular diastolic dysfunction for detecting cardiac allograft vasculopathy in recipients of heart transplants. Int J Cardiovasc Imaging 2012;28:555-62.

    Article  PubMed  Google Scholar 

  73. Miller CA, Sarma J, Naish JH, Yonan N, Williams SG, Shaw SM, et al. Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J Am Coll Cardiol 2014;63:799-808.

    Article  PubMed  Google Scholar 

  74. Gregory SA, Ferencik M, Achenbach S, Yeh RW, Hoffmann U, Inglessis I, et al. Comparison of sixty-four-slice multidetector computed tomographic coronary angiography to coronary angiography with intravascular ultrasound for the detection of transplant vasculopathy. Am J Cardiol 2006;98:877-84.

    Article  PubMed  Google Scholar 

  75. Schepis T, Achenbach S, Weyand M, Raum P, Marwan M, Pflederer T, et al. Comparison of dual source computed tomography versus intravascular ultrasound for evaluation of coronary arteries at least one year after cardiac transplantation. Am J Cardiol 2009;104:1351-6.

    Article  PubMed  Google Scholar 

  76. Kobashigawa J. Coronary computed tomography angiography: Is it time to replace the conventional coronary angiogram in heart transplant patients? J Am Coll Cardiol 2014;63:2005-6.

    Article  PubMed  Google Scholar 

  77. Wever-Pinzon O, Romero J, Kelesidis I, Wever-Pinzon J, Manrique C, Budge D, et al. Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy: A meta-analysis of prospective trials. J Am Coll Cardiol 2014;63:1992-2004.

    Article  PubMed  Google Scholar 

  78. Rohnean A, Houyel L, Sigal-Cinqualbre A, To NT, Elfassy E, Paul JF. Heart transplant patient outcomes: 5-year mean follow-up by coronary computed tomography angiography. Transplantation 2011;91:583-8.

    Article  PubMed  Google Scholar 

  79. Pichler P, Loewe C, Roedler S, Syeda B, Stadler A, Aliabadi A, et al. Detection of high-grade stenoses with multislice computed tomography in heart transplant patients. J Heart Lung Transplant 2008;27:310-6.

    Article  PubMed  Google Scholar 

  80. Nahrendorf M, Keliher E, Panizzi P, Zhang H, Hembrador S, Figueiredo JL, et al. 18F-4 V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc Imaging 2009;2:1213-22.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Seki A, Fishbein MC. Predicting the development of cardiac allograft vasculopathy. Cardiovasc Pathol 2014;23:253-60.

    Article  PubMed  Google Scholar 

  82. Starling RC, Stehlik J, Baran DA, Armstrong B, Stone JR, Ikle D, et al. Multicenter Analysis of Immune Biomarkers and Heart Transplant Outcomes: Results of the Clinical Trials in Organ Transplantation-05 Study. Am J Transplant 2015;. doi:10.1111/ajt.13422.

    PubMed  Google Scholar 

  83. Hofmann NP, Steuer C, Voss A, Erbel C, Celik S, Doesch A, et al. Comprehensive bio-imaging using myocardial perfusion reserve index during cardiac magnetic resonance imaging and high-sensitive troponin T for the prediction of outcomes in heart transplant recipients. Am J Transplant 2014;14:2607-16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Wael Jaber and Dr. Paul Cremer from Cleveland Clinic Hospital for contributing some of the presented images.

Disclosure

The authors have indicated that they have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Acharya MD, MSPH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payne, G.A., Hage, F.G. & Acharya, D. Transplant allograft vasculopathy: Role of multimodality imaging in surveillance and diagnosis. J. Nucl. Cardiol. 23, 713–727 (2016). https://doi.org/10.1007/s12350-015-0373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0373-3

Keywords

Navigation