Skip to main content

Advertisement

Log in

Imaging in patients after cardiac transplantation and in patients with ventricular assist devices

  • Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

The field of cardiac imaging and the management of patients with severe heart failure have advanced substantially during the past 10 years. Cardiac transplantation offers the best long-term survival with high quality of life for the patients with end stage heart failure. However, acute cardiac rejection and cardiac allograft vasculopathy (CAV) can occur post cardiac transplantation and these problems necessitate regular surveillance. The short-term success of mechanical circulatory support devices (MCSD), such as ventricular assist devices (VADs), in improving survival and quality of life has led to a dramatic growth of the patient population with these devices. The development of optimal imaging techniques and algorithms to evaluate these advanced heart failure patients is evolving and multimodality non-invasive imaging approaches and invasive techniques are commonly employed. Most of the published studies done in the transplant and VAD population are small, and biased based on the strength of the particular program, and there is a relative lack of published protocols to evaluate these patient groups. Moreover, the techniques of echocardiography, computed tomography (CT), magnetic resonance imaging, and nuclear cardiology have all progressed rapidly in recent years. There is thus a knowledge gap for cardiologists, radiologists, and clinicians, especially regarding surveillance for CAV and ideal imaging approaches for patients with VADs. The purpose of this review article is to provide an overview of different noninvasive imaging modalities used to evaluate patients after cardiac transplantation and for patients with VADs. The review focuses on the role of echocardiography, CT, and nuclear imaging in surveillance for CAV and rejection and on the assessment of ventricular structure and function, myocardial remodeling and complications for VAD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Lamich R, Ballester M, Martí V, et al. Efficacy of augmented immunosuppressive therapy for early vasculopathy in heart transplantation. J Am Coll Cardiol 1998;32:413-9.

    CAS  PubMed  Google Scholar 

  2. Mancini D, Pinney S, Burkhoff D, et al. Use of rapamycin slows progression of cardiac transplantation vasculopathy. Circulation 2003;108:48-53.

    CAS  PubMed  Google Scholar 

  3. Raichlin E, Bae JH, Kushwaha SS, et al. Inflammatory burden of cardiac allograft coronary atherosclerotic plaque is associated with early recurrent cellular rejection and predicts a higher risk of vasculopathy progression. J Am Coll Cardiol 2009;53:1279-86.

    PubMed  Google Scholar 

  4. Ruygrok PN, Webber B, Faddy S, Muller DW, Keogh A. Angiographic regression of cardiac allograft vasculopathy after introducing sirolimus immunosuppression. J Heart Lung Transpl 2003;22:1276-9.

    Google Scholar 

  5. Mehra MR, Crespo-Leiro MG, Dipchand A, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transpl 2010;29:717-27.

    Google Scholar 

  6. Stone GW, Maehara A, Lansky AJ, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364:226-35.

    CAS  PubMed  Google Scholar 

  7. Guddeti RR, Matsuo Y, Matsuzawa Y, et al. Clinical implications of intracoronary imaging in cardiac allograft vasculopathy. Circulation 2015;8:e002636.

    PubMed  Google Scholar 

  8. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: A report from the International Working Group for intravascular optical coherence tomography standardization and validation. J Am Coll Cardiol 2012;59:1058-72.

    PubMed  Google Scholar 

  9. Tissot CM, Guendouz S, Mouillet G, et al. Comparison of optical coherence tomography (OCT) and intravascular ultrasound (IVUS) for the early diagnosis of cardiac allograft vasculopathy in heart transplant patients. J Heart Lung Transpl 2013;32:S209.

    Google Scholar 

  10. Schmauss D, Weis M. Cardiac allograft vasculopathy: Recent developments. Circulation 2008;117:2131-41.

    PubMed  Google Scholar 

  11. Thorn EM, de Filippi CR. Echocardiography in the cardiac transplant recipient. Heart Fail Clin. 2007;3:51-67.

    PubMed  Google Scholar 

  12. Dandel M, Knollmann FD, Wellnhofer E, Hummel M, Kapell S, Hetzer R. Noninvasive surveillance strategy for early identification of heart transplant recipients with possible coronary stenoses. Transpl Proc. 2003;35:2113-6.

    CAS  Google Scholar 

  13. Hummel M, Dandel M, Knollmann F, et al. Long-term surveillance of heart-transplanted patients: Noninvasive monitoring of acute rejection episodes and transplant vasculopathy. Transpl Proc. 2001;33:3539-42.

    CAS  Google Scholar 

  14. Spes CH, Klauss V, Mudra H, et al. Diagnostic and prognostic value of serial dobutamine stress echocardiography for noninvasive assessment of cardiac allograft vasculopathy: A comparison with coronary angiography and intravascular ultrasound. Circulation 1999;100:509-15.

    CAS  PubMed  Google Scholar 

  15. Minardi G, Zampi G, Pergolini A, et al. The pressure/volume relationship during dobutamine stress echocardiography in transplanted heart: Comparison with quality of life and coronary anatomy. Cardiovasc Ultrasound. 2012;10:44.

    PubMed Central  PubMed  Google Scholar 

  16. Clemmensen TS, Logstrup BB, Eiskjaer H, Poulsen SH. Evaluation of longitudinal myocardial deformation by 2-dimensional speckle-tracking echocardiography in heart transplant recipients: Relation to coronary allograft vasculopathy. J Heart Lung Transpl 2014.

  17. Pries AR, Habazettl H, Ambrosio G, et al. A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc Res. 2008;80:165-74.

    CAS  PubMed  Google Scholar 

  18. Schächinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long- term outcome of coronary heart disease. Circulation 2000;101:1899-906.

    PubMed  Google Scholar 

  19. Hollenberg SM, Scherer MD, Wurzburg DD. Changes in coronary endothelial function predict progression of allograft vasculopathy late after heart transplantation. Circulation 1999;100:1391.

    Google Scholar 

  20. Fearon WF, Nakamura M, Lee DP, et al. Simultaneous assessment of fractional and coronary flow reserves in cardiac transplant recipients: Physiologic investigation for transplant arteriopathy (PITA study). Circulation 2003;108:1605-10.

    PubMed  Google Scholar 

  21. Escaned J, Flores A, García-Pavía P, et al. Assessment of microcirculatory remodeling with intracoronary flow velocity and pressure measurements: Validation with endomyocardial sampling in cardiac allografts. Circulation 2009;120:1561-8.

    CAS  PubMed  Google Scholar 

  22. Kübrich M, Petrakopoulou P, Kofler S, et al. Impact of coronary endothelial dysfunction on adverse long-term outcome after heart transplantation. Transplantation. 2008;85:1580-7.

    PubMed  Google Scholar 

  23. Tona F, Osto E, Tarantini G, et al. Coronary flow reserve by transthoracic echocardiography predicts epicardial intimal thickening in cardiac allograft vasculopathy. Am J Transpl 2010;10:1677-85.

    Google Scholar 

  24. Rodrigues ACT, Frimm CDC, Bacal F, et al. Coronary flow reserve impairment predicts cardiac events in heart transplant patients with preserved left ventricular function. Int J Cardiol 2005;103:201-6.

    PubMed  Google Scholar 

  25. Rodrigues ACT, Bacal F, Medeiros CC, et al. Noninvasive detection of coronary allograft vasculopathy by myocardial contrast echocardiography. J Am Soc Echocardiogr 2005;18:116-21.

    PubMed  Google Scholar 

  26. Tona F, Caforio ALP, Montisci R, et al. Coronary flow reserve by contrast-enhanced echocardiography: A new noninvasive diagnostic tool for cardiac allograft vasculopathy. Am J Transpl 2006;6:998-1003.

    CAS  Google Scholar 

  27. Tona F, Caforio ALP, Montisci R, et al. Coronary flow velocity pattern and coronary flow reserve by contrast-enhanced transthoracic echocardiography predict long-term outcome in heart transplantation. Circulation 2006;114:I49-55.

    PubMed  Google Scholar 

  28. Ziadi M, deKemp R, Williams K, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-80.

    PubMed  Google Scholar 

  29. Braggion-Santos MF, Lossnitzer D, Buss S, et al. Late gadolinium enhancement assessed by cardiac magnetic resonance imaging in heart transplant recipients with different stages of cardiac allograft vasculopathy. Eur Heart J Cardiovasc Imaging. 2014;15:90.

    Google Scholar 

  30. Miller CA, Sarma J, Naish JH, et al. Multiparametric cardiovascular magnetic resonance assessment of cardiac allograft vasculopathy. J Am Coll Cardiol 2014;63:799-808.

    PubMed  Google Scholar 

  31. Hacker M, Tausig A, Romuller B, et al. Dobutamine myocardial scintigraphy for the prediction of cardiac events after heart transplantation. Nucl Med Commun. 2005;26:607-12.

    PubMed  Google Scholar 

  32. Elhendy A, van Domburg RT, Vantrimpont P, et al. Prediction of mortality in heart transplant recipients by stress technetium-99m tetrofosmin myocardial perfusion imaging. Am J Cardiol 2002;89:964-8.

    PubMed  Google Scholar 

  33. Wenning C, Stypmann J, Papavassilis P, et al. Left ventricular dilation and functional impairment assessed by gated SPECT are indicators of cardiac allograft vasculopathy in heart transplant recipients. J Heart Lung Transpl 2012;31:719-28.

    Google Scholar 

  34. Manrique A, Bernard M, Hitzel A, et al. Diagnostic and prognostic value of myocardial perfusion gated SPECT in orthotopic heart transplant recipients. J Nucl Cardiol 2010;17:197-206.

    PubMed  Google Scholar 

  35. Thompson D, Koster MJ, Wagner RH, Heroux A, Barron JT. Single photon emission computed tomography myocardial perfusion imaging to detect cardiac allograft vasculopathy. Eur Heart J Cardiovasc Imaging. 2012;13:271-5.

    PubMed  Google Scholar 

  36. Wu YW, Yen RF, Lee CM, et al. Diagnostic and prognostic value of dobutamine thallium-201 single-photon emission computed tomography after heart transplantation. J Heart Lung Transpl 2005;24:544-50.

    Google Scholar 

  37. Bacal F, Moreira L, Souza G, et al. Dobutamine stress echocardiography predicts cardiac events or death in asymptomatic patients long-term after heart transplantation: 4-Year prospective evaluation. J Heart Lung Transpl 2004;23:1238-44.

    Google Scholar 

  38. Ciliberto GR, Ruffini L, Mangiavacchi M, et al. Resting echocardiography and quantitative dipyridamole technetium-99m sestamibi tomography in the identification of cardiac allograft vasculopathy and the prediction of long-term prognosis after heart transplantation. Eur Heart J 2001;22:964-71.

    CAS  PubMed  Google Scholar 

  39. Elhendy A, Sozzi FB, van Domburg RT, et al. Accuracy of dobutamine tetrofosmin myocardial perfusion imaging for the noninvasive diagnosis of transplant coronary artery stenosis. J Heart Lung Transpl 2000;19:360-6.

    CAS  Google Scholar 

  40. Carlsen J, Toft JC, Mortensen SA, Arendrup H, Aldershvile J, Hesse B. Myocardial perfusion scintigraphy as a screening method for significant coronary artery stenosis in cardiac transplant recipients. J Heart Lung Transpl 2000;19:873-8.

    CAS  Google Scholar 

  41. Aranda JM Jr, Hill J. Cardiac transplant vasculopathy. Chest. 2000;118:1792-800.

    PubMed  Google Scholar 

  42. Cavalcante JL, Barboza J, Ananthasubramaniam K. Regadenoson is a safe and well-tolerated pharmacological stress agent for myocardial perfusion imaging in post-heart transplant patients. J Nucl Cardiol 2011;18:628-33.

    PubMed  Google Scholar 

  43. Ratliff NB Iii, Jorgensen CR, Gobel FL, Hodges M, Knickelbine T, Pritzker MR. Lack of usefulness of electron beam computed tomography for detecting coronary allograft vasculopathy. Am J Cardiol 2004;94:202-6.

    PubMed  Google Scholar 

  44. Romeo G, Houyel L, Angel CY, Brenot P, Riou JY, Paul JF. Coronary stenosis detection by 16-slice computed tomography in heart transplant patients: Comparison with conventional angiography and impact on clinical management. J Am Coll Cardiol 2005;45:1826-31.

    PubMed  Google Scholar 

  45. Mittal TK, Panicker MG, Mitchell AG, Banner NR. Cardiac allograft vasculopathy after heart transplantation: Electrocardiographically gated cardiac CT angiography for assessment. Radiology. 2013;268:374-81.

    PubMed  Google Scholar 

  46. von Ziegler F, Rummler J, Kaczmarek I, et al. Detection of significant coronary artery stenosis with cardiac dual-source computed tomography angiography in heart transplant recipients. Transpl Int. 2012;25:1065-71.

    Google Scholar 

  47. Kepka C, Sobieszczansk-Malek M, Pregowski J, et al. Usefulness of dual-source computed tomography for the evaluation of coronary arteries in heart transplant recipients. Kardiol polska. 2012;70:1111-9.

    PubMed  Google Scholar 

  48. Nunoda S, Machida H, Sekikawa A, et al. Evaluation of cardiac allograft vasculopathy by multidetector computed tomography and whole-heart magnetic resonance coronary angiography. Circ J 2010;74:946-53.

    PubMed  Google Scholar 

  49. von Ziegler F, Leber AW, Becker A, et al. Detection of significant coronary artery stenosis with 64-slice computed tomography in heart transplant recipients: A comparative study with conventional coronary angiography. Int J Cardiovasc Imaging. 2009;25:91-100.

    Google Scholar 

  50. Usta E, Burgstahler C, Aebert H, et al. The challenge to detect heart transplant rejection and transplant vasculopathy non-invasively a pilot study. J Cardiothorac Surg 2009;4:43.

    PubMed Central  PubMed  Google Scholar 

  51. Schepis T, Achenbach S, Weyand M, et al. Comparison of dual source computed tomography versus intravascular ultrasound for evaluation of coronary arteries at least one year after cardiac transplantation. Am J Cardiol 2009;104:1351-6.

    PubMed  Google Scholar 

  52. Pichler P, Loewe C, Roedler S, et al. Detection of high-grade stenoses with multislice computed tomography in heart transplant patients. J Heart Lung Transpl 2008;27:310-6.

    Google Scholar 

  53. Sigurdsson G, Carrascosa P, Yamani MH, et al. Detection of transplant coronary artery disease using multidetector computed tomography with adaptative multisegment reconstruction. J Am Coll Cardiol 2006;48:772-8.

    PubMed  Google Scholar 

  54. Moro J, Almenar L, Igual B, et al. Multislice CT in Graft vascular disease. A pilot study. Transpl Proc. 2006;38:2563-5.

    CAS  Google Scholar 

  55. Iyengar S, Feldman DS, Cooke GE, Leier CV, Raman SV. Detection of coronary artery disease in orthotopic heart transplant recipients with 64-detector row computed tomography angiography. J Heart Lung Transpl 2006;25:1363-6.

    Google Scholar 

  56. Gregory SA, Ferencik M, Achenbach S, et al. Comparison of sixty-four-slice multidetector computed tomographic coronary angiography to coronary angiography with intravascular ultrasound for the detection of transplant vasculopathy. Am J Cardiol 2006;98:877-84.

    PubMed  Google Scholar 

  57. Wever-Pinzon O, Romero J, Kelesidis I, et al. Coronary computed tomography angiography for the detection of cardiac allograft vasculopathy: A meta-analysis of prospective trials. J Am Coll Cardiol 2014;63:1992-2004.

    PubMed  Google Scholar 

  58. Mastrobuoni S, Bastarrika G, Ubilla M, et al. Dual-source ct coronary angiogram in heart transplant recipients in comparison with dobutamine stress echocardiography for detection of cardiac allograft vasculopathy. Transplantation. 2009;87:587-90.

    PubMed  Google Scholar 

  59. Bogot NR, Durst R, Shaham D, Admon D. Cardiac CT of the transplanted heart: Indications, technique, appearance, and complications. Radiographics. 2007;27:1297-309.

    PubMed  Google Scholar 

  60. Pontana F, Pagniez J, Duhamel A, et al. Reduced-dose low-voltage chest CT angiography with Sinogram-affirmed iterative reconstruction versus standard-dose filtered back projection. Radiology. 2013;267:609-18.

    PubMed  Google Scholar 

  61. Komatsu S, Kamata T, Imai A, et al. Coronary computed tomography angiography using ultra-low-dose contrast media: Radiation dose and image quality. Int J Cardiovasc Imaging. 2013;29:1335-40.

    PubMed  Google Scholar 

  62. Bastarrika G, Broncano J, Arraiza M, et al. Systolic prospectively ECG-triggered dual-source CT angiography for evaluation of the coronary arteries in heart transplant recipients. Eur Radiol. 2011;21:1887-94.

    PubMed  Google Scholar 

  63. Stewart S, Winters GL, Fishbein MC, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transpl 2005;24:1710-20.

    Google Scholar 

  64. Billingham ME, Cary NR, Hammond ME, et al. A working formulation for the standardization of nomenclature in the diagnosis of heart and lung rejection: Heart Rejection Study Group. The International Society for Heart Transplantation. J Heart Transpl 1990;9:587-93.

    CAS  Google Scholar 

  65. Kobashigawa J, Mehra M, West L, et al. Report from a consensus conference on the sensitized patient awaiting heart transplantation. J Heart Lung Transpl 2009;28:213-25.

    Google Scholar 

  66. Berry GJ, Angelini A, Burke MM, et al. The ISHLT working formulation for pathologic diagnosis of antibody-mediated rejection in heart transplantation: evolution and current status (2005-2011). J Heart Lung Transpl 2011;30:601-11.

    Google Scholar 

  67. Kobashigawa JA. Contemporary concepts in noncellular rejection. Heart Fail Clin. 2007;3:11-5.

    PubMed  Google Scholar 

  68. Almuti K, Haythe J, Dwyer E, et al. The changing pattern of humoral rejection in cardiac transplant recipients. Transplantation. 2007;84:498-503.

    PubMed  Google Scholar 

  69. Reed EF, Demetris AJ, Hammond E, et al. Acute antibody-mediated rejection of cardiac transplants. J Heart Lung Transpl 2006;25:153-9.

    Google Scholar 

  70. Hammond EH, Yowell RL, Nunoda S, et al. Vascular (humoral) rejection in heart transplantation: Pathologic observations and clinical implications. J Heart Transpl 1989;8:430-43.

    CAS  Google Scholar 

  71. Stehlik J, Edwards LB, Kucheryavaya AY. The Registry of the International Society for Heart and Lung Transplantation: Twenty-seventh official adult heart transplant report-2010. J Heart Lung Transpl 2010;29:1089-103.

    Google Scholar 

  72. Yilmaz A, Kindermann I, Kindermann M, et al. Comparative evaluation of left and right ventricular endomyocardial biopsy: Differences in complication rate and diagnostic performance. Circulation 2010;122:900-9.

    PubMed  Google Scholar 

  73. Almenar L, Osa A, Martínez-Dolz L, et al. Echocardiographic evaluation of the evolutionary changes after heart transplantation. Transpl Proc. 2006;38:2575-6.

    CAS  Google Scholar 

  74. Sun JP, Abdalla IA, Asher CR, et al. Non-invasive evaluation of orthotopic heart transplant rejection by echocardiography. J Heart Lung Transpl 2005;24:160-5.

    PubMed  Google Scholar 

  75. Dandel M, Hummel M, Meyer R, et al. Left ventricular dysfunction during cardiac allograft rejection: Early diagnosis, relationship to the histological severity grade, and therapeutic implications. Transpl Proc. 2002;34:2169-73.

    CAS  Google Scholar 

  76. Mena C, Wencker D, Krumholz HM, McNamara RL. Detection of heart transplant rejection in adults by echocardiographic diastolic indices: A systematic review of the literature. J Am Soc Echocardiogr 2006;19:1295-300.

    PubMed  Google Scholar 

  77. Kato TS, Oda N, Hashimura K, et al. Strain rate imaging would predict sub-clinical acute rejection in heart transplant recipients. Eur J Cardiothorac Surg 2010;37:1104-10.

    PubMed  Google Scholar 

  78. Marciniak A, Eroglu E, Marciniak M, et al. The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr 2007;8:213-21.

    PubMed  Google Scholar 

  79. Dandel M, Hetzer R. Echocardiographic strain and strain rate imaging-clinical applications. Int J Cardiol 2009;132:11-24.

    PubMed  Google Scholar 

  80. Hanekom L, Cho GY, Leano R, Jeffriess L, Marwick TH. Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J 2007;28:1765-72.

    PubMed  Google Scholar 

  81. Clemmensen TS, Logstrup BB, Eiskjaer H, Poulsen SH. Changes in longitudinal myocardial deformation during acute cardiac rejection: The clinical role of two-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 2014. doi:10.1016/j.echo.2014.10.015.

    PubMed  Google Scholar 

  82. Sera F, Kato TS, Farr M, et al. Left ventricular longitudinal strain by speckle-tracking echocardiography is associated with treatment-requiring cardiac allograft rejection. J Card Fail. 2014;20:359-64.

    PubMed  Google Scholar 

  83. Ortiz MR, Pena ML, Mesa D, et al. Impact of asymptomatic acute cellular rejection on left ventricle myocardial function evaluated by means of two-dimensional speckle tracking echocardiography in heart transplant recipients. Echocardiography. 2014. doi:10.1111/echo.12623.

    PubMed  Google Scholar 

  84. Marie PY, Angioï M, Carteaux JP, et al. Detection and prediction of acute heart transplant rejection with the myocardial T2 determination provided by a black-blood magnetic resonance imaging sequence. J Am Coll Cardiol 2001;37:825-31.

    CAS  PubMed  Google Scholar 

  85. Wisenberg G, Pflugfelder PW, Kostuk WJ, McKenzie FN, Prato FS. Diagnostic applicability of magnetic resonance imaging in assessing human cardiac allograft rejection. Am J Cardiol 1987;60:130-6.

    CAS  PubMed  Google Scholar 

  86. Taylor AJ, Vaddadi G, Pfluger H, et al. Diagnostic performance of multisequential cardiac magnetic resonance imaging in acute cardiac allograft rejection. Eur J Heart Fail. 2010;12:45-51.

    PubMed Central  PubMed  Google Scholar 

  87. Ammar KA, Umland MM, Kramer C, et al. The ABCs of left ventricular assist device echocardiography: A systematic approach. Eur Heart J Cardiovasc Imaging. 2012;13:885-99.

    PubMed  Google Scholar 

  88. Vitarelli A, Gheorghiade M. Transthoracic and transesophageal echocardiography in the hemodynamic assessment of patients with congestive heart failure. Am J Cardiol 2000;86:36G-40G.

    CAS  PubMed  Google Scholar 

  89. Chumnanvej S, Wood MJ, MacGillivray TE, Melo MFV. Perioperative echocardiographic examination for ventricular assist device implantation. Anesth Analg. 2007;105:583-601.

    PubMed  Google Scholar 

  90. Garcia MAZ, Enriquez LA, Dembitsky W, May-Newman K. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation ASAIO J 2008;54:237-44.

    Google Scholar 

  91. Horton SC, Khodaverdian R, Chatelain P, et al. Left ventricular assist device malfunction: An approach to diagnosis by echocardiography. J Am Coll Cardiol 2005;45:1435-40.

    PubMed  Google Scholar 

  92. Rajagopal K, Daneshmand MA, Patel CB, et al. Natural history and clinical effect of aortic valve regurgitation after left ventricular assist device implantation. J Thorac Cardiovasc Surg 2013;145:1373-9.

    PubMed  Google Scholar 

  93. Badano LP, Albanese MC, De Biaggio P, et al. Prevalence, clinical characteristics, quality of life, and prognosis of patients with congestive heart failure and isolated left ventricular diastolic dysfunction. J Am Soc Echocardiogr 2004;17:253-61.

    PubMed  Google Scholar 

  94. Gracin N, Johnson MR, Spokas D, et al. The use of APACHE II scores to select candidates for left ventricular assist device placement. J Heart Lung Transpl 1998;17:1017-23.

    CAS  PubMed  Google Scholar 

  95. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA. Doppler tissue imaging: A noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 1997;30:1527-33.

    CAS  PubMed  Google Scholar 

  96. Pinamonti B, Zecchin M, Di Lenarda A, Gregori D, Sinagra G, Camerini F. Persistence of restrictive left ventricular filling pattern in dilated cardiomyopathy: An ominous prognostic sign. J Am Coll Cardiol 1997;29:604-12.

    CAS  PubMed  Google Scholar 

  97. Aaronson KD, Patel H, Pagani FD. Patient selection for left ventricular assist device therapy. Ann Thorac Surg 2003;75:S29-35.

    PubMed  Google Scholar 

  98. Frazier OH, Rose EA, Dz MC, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg 2001;122:1186-95.

    CAS  PubMed  Google Scholar 

  99. Ochiai Y, McCarthy PM, Smedira NG, et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: Analysis of 245 patients. Circulation 2002;106:I198-202.

    PubMed  Google Scholar 

  100. Lindquist P, Henein M, Kazzam E. Right ventricular outflow-tract fractional shortening: An applicable measure of right ventricular systolic function. Eur J Echocardiogr 2003;4:29-35.

    Google Scholar 

  101. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography. Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685-713.

    PubMed  Google Scholar 

  102. Schenk S, McCarthy PM, Blackstone EH, et al. Duration of inotropic support after left ventricular assist device implantation: Risk factors and impact on outcome. J Thorac Cardiovasc Surg 2006;131:447-54.

    PubMed  Google Scholar 

  103. Torre-Amione G, Southard RE, Loebe MM, et al. Reversal of secondary pulmonary hypertension by axial and pulsatile mechanical circulatory support. J Heart Lung Transpl 2010;29:195-200.

    Google Scholar 

  104. Dalby MCD, Banner NR, Tansley P, Grieve LA, Partridge J, Yacoub MH. Left ventricular function during support with an asynchronous pulsatile left ventricular assist device. J Heart Lung Transpl 2003;22:292-300.

    CAS  Google Scholar 

  105. Lam KMT, Ennis S, O’Driscoll G, Solis JM, MacGillivray T, Picard MH. Observations from non-invasive measures of right heart hemodynamics in left ventricular assist device patients. J Am Soc Echocardiogr 2009;22:1055-62.

    PubMed  Google Scholar 

  106. Stainback RF, Croitoru M, Hernandez A, Myers TJ, Wadia Y, Frazier OH. Echocardiographic evaluation of the Jarvik 2000 axial-flow LVAD. Tex Heart Inst J 2005;32:263-70.

    PubMed Central  PubMed  Google Scholar 

  107. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol 2003;41:1021-7.

    PubMed  Google Scholar 

  108. Estep JD, Stainback RF, Little SH, Torre G, Zoghbi WA. The role of echocardiography and other imaging modalities in patients with left ventricular assist devices. Cardiol Res Pract 2011. doi:10.4061/2011/187434.

    Google Scholar 

  109. Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: An autopsy study of 965 normal hearts. Mayo Clin Proc 1984;59:17-20.

    CAS  PubMed  Google Scholar 

  110. Liao KK, Miller L, Toher C, et al. Timing of transesophageal echocardiography in diagnosing patent foramen ovale in patients supported with left ventricular assist device. Ann Thorac Surg 2003;75:1624-6.

    PubMed  Google Scholar 

  111. Topilsky Y, Maltais S, Oh JK. Focused review on transthoracic echocardiographic assessment of patients with continuous axial left ventricular assist devices. Cardiol Res Pract 2011. doi:10.4061/2011/187434.

    PubMed Central  PubMed  Google Scholar 

  112. Grant ADM, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol 2012;60:521-8.

    PubMed  Google Scholar 

  113. Akhabue E, Park CS, Pinney S, et al. Speckle tracking strain echocardiography for risk assessment of ventricular arrhythmias after left ventricular assist device placement. J Am Coll Cardiol 2014. doi:10.1016/S0735-1097(14)61138-4.

    Google Scholar 

  114. Oh JK, Seward JB, Tajik J. The Echo Manual. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  115. Litwak KN, Koenig SC, Tsukui H, Kihara S, Wu Z, Pantalos GM. Effects of left ventricular assist device support and outflow graft location upon aortic blood flow. ASAIO J 2004;50:432-7.

    PubMed  Google Scholar 

  116. Toda K, Fujita T, Domae K, Shimahara Y, Kobayashi J, Nakatani T. Late aortic insufficiency related to poor prognosis during left ventricular assist device support. Ann Thorac Surg 2011;92:929-34.

    PubMed  Google Scholar 

  117. Scalia GM, McCarthy PM, Savage RM, Smedira NG, Thomas JD. Clinical Utility of Echocardiography in the Management of Implantable Ventricular Assist Devices. J Am Soc Echocardiogr 2000;13:754-63.

    CAS  PubMed  Google Scholar 

  118. Lembcke A, Dohmen PM, Dewey M, et al. Multislice computed tomography for preoperative evaluation of right ventricular volumes and function: Comparison with magnetic resonance imaging. Ann Thorac Surg 2005;79:1344-51.

    PubMed  Google Scholar 

  119. Garcia-Alvarez A, Fernandez-Friera L, Lau JF, et al. Evaluation of right ventricular function and post-operative findings using cardiac computed tomography in patients with left ventricular assist devices. J Heart Lung Transpl 2011;30:896-903.

    PubMed  Google Scholar 

  120. Mahnken AH, Spüntrup E, Wildberger JE, et al. Quantification of cardiac function with multislice spiral CT using retrospective EKG-gating: Comparison with MRI. RoFo 2003;175:83-8.

    CAS  PubMed  Google Scholar 

  121. Raman SV, Tran T, Simonetti OP, Sun B. Dynamic computed tomography to determine cardiac output in patients with left ventricular assist devices. J Thorac Cardiovasc Surg 2009;137:1213-7.

    PubMed  Google Scholar 

  122. Acharya D, Singh S, Tallaj JA, et al. Use of gated cardiac computed tomography angiography in the assessment of left ventricular assist device dysfunction. ASAIO J 2011;57:32-7.

    PubMed  Google Scholar 

  123. Starling RC, Moazami N, Silvestry SC, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med 2014;370:33-40.

    CAS  PubMed  Google Scholar 

  124. Kirklin JK, Naftel DC, Kormos RL, et al. Interagency registry for mechanically assisted circulatory support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J Heart Lung Transpl 2014;33:12-22.

    Google Scholar 

  125. Mehra MR, Stewart GC, Uber PA. The vexing problem of thrombosis in long-term mechanical circulatory support. J Heart Lung Transpl 2014;33:1-11.

    Google Scholar 

  126. Drakos SG, Kfoury AG, Hammond EH, et al. Impact of mechanical unloading on microvasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol 2010;56:382-91.

    PubMed Central  PubMed  Google Scholar 

  127. Hall JL, Fermin DR, Birks EJ, et al. Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol 2011;57:641-52.

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Gupta DK, Skali H, Rivero J, et al. Assessment of myocardial viability and left ventricular function in patients supported by a left ventricular assist device. J Heart Lung Transpl 2014;33:372-81.

    Google Scholar 

  129. Caldwell JH, Link JM, Levy WC, Poole JE, Stratton JR. Evidence for pre- to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med 2008;49:234-41.

    PubMed  Google Scholar 

  130. Ungerer M, Böhm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 1993;87:454-63.

    CAS  PubMed  Google Scholar 

  131. Jacobson AF, Senior R, Cerqueira MD, et al. Myocardial Iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure: Results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol 2010;55:2212-21.

    PubMed  Google Scholar 

  132. Tamaki S, Yamada T, Okuyama Y, et al. Cardiac Iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction. Results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 2009;53:426-35.

    CAS  PubMed  Google Scholar 

  133. Agostini D, Verberne HJ, Burchert W, et al. I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: Insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging 2008;35:535-46.

    PubMed  Google Scholar 

  134. Nakata T, Nakajima K, Yamashina S, et al. A pooled analysis of multicenter cohort studies of 123I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC 2013;6:772-84.

    PubMed  Google Scholar 

  135. Bick RJ, Poindexter BJ, Buja LM, et al. Improved sarcoplasmic reticulum function after mechanical left ventricular unloading. Cardiovasc Pathobiol 1998;2:159-66.

    Google Scholar 

  136. Drakos SG, Athanasoulis T, Malliaras KG, et al. Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC 2010;3:64-70.

    Google Scholar 

  137. Ogletree ML, Sweet WE, Talerico C, et al. Duration of left ventricular assist device support: Effects on abnormal calcium cycling and functional recovery in the failing human heart. J Heart Lung Transp 2010;29:554-61.

    PubMed  Google Scholar 

  138. Hattori N, Schwaiger M. Metaiodobenzylguanidine scintigraphy of the heart: What have we learnt clinically? Eur J Nucl Med 2000;27:1-6.

    CAS  PubMed  Google Scholar 

  139. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis: Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974;33:87-94.

    CAS  PubMed  Google Scholar 

  140. Maybaum S, Epstein S, Beniaminovitz A, et al. Partial loading of the left ventricle during mechanical assist device support is associated with improved myocardial function, blood flow and metabolism and increased exercise capacity. J Heart Lung Transpl 2002;21:446-54.

    Google Scholar 

  141. Holman WL, Park SJ, Long JW, et al. Infection in permanent circulatory support: Experience from the REMATCH trial. J Heart Lung Transpl 2004;23:1359-65.

    Google Scholar 

  142. Hannan MM, Husain S, Mattner F, et al. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transpl 2011;30:375-84.

    Google Scholar 

  143. Litzler P-Y, Manrique A, Etienne M, et al. Leukocyte SPECT/CT for detecting infection of left-ventricular-assist devices: preliminary results. J Nucl Med 2010;51:1044-8.

    PubMed  Google Scholar 

  144. Roman CD, Habibian MR, Martin WH. Identification of an infected left ventricular assist device after cardiac transplant by indium-111 WBC scintigraphy. Clin Nucl Med 2005;30:16-7.

    PubMed  Google Scholar 

  145. Kim J, Feller ED, Chen W, Dilsizian V. FDG, PET/CT imaging for LVAD associated infections. JACC 2014;7:839-42.

    PubMed  Google Scholar 

Download references

Disclosure

All authors affirm they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall Thompson MD, FASNC.

Additional information

See related editorial, doi:10.1007/s12350-015-0111-x.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 255779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, B., Jacob, D. & Thompson, R. Imaging in patients after cardiac transplantation and in patients with ventricular assist devices. J. Nucl. Cardiol. 22, 617–638 (2015). https://doi.org/10.1007/s12350-015-0115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0115-6

Keywords

Navigation