Skip to main content
Log in

Cardiac remodeling in a new pig model of chronic heart failure: Assessment of left ventricular functional, metabolic, and structural changes using PET, CT, and echocardiography

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Aims

Large animal models are needed to study disease mechanisms in heart failure (HF). In the present study we characterized the functional, metabolic, and structural changes of myocardium in a novel pig model of chronic myocardial infarction (MI) by using multimodality imaging and histology.

Methods and Results

Male farm pigs underwent a two-step occlusion of the left anterior descending coronary artery with concurrent distal ligation and implantation of a proximal ameroid constrictor (HF group), or sham operation (control group). Three months after the operation, cardiac output and wall stress were measured by echocardiography. Left ventricle (LV) volumes and mass were measured by computed tomography (CT). Myocardial perfusion was evaluated by [15O]water and oxygen consumption using [11C]acetate positron emission tomography, and the efficiency of myocardial work was calculated. Histological examinations were conducted to detect MI, hypertrophy, and fibrosis. Animals in the HF group had a large anterior MI scar. CT showed larger LV diastolic volume and lower ejection fraction in HF pigs than in controls. Perfusion and oxygen consumption in the remote non-infarcted myocardium were preserved in HF pigs as compared to controls. Global LV work and efficiency were significantly lower in HF than control pigs and was associated with increased wall stress. Histology showed myocyte hypertrophy but not increased interstitial fibrosis in the remote segments in HF pigs.

Conclusions

The chronic post-infarction model of HF is suitable for studies aimed to evaluate LV remodeling and changes in oxidative metabolism and can be useful for testing new therapies for HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 2014;383:1933-43.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: Current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 2011;4:98-108.

    Article  PubMed  Google Scholar 

  3. Fallavollita JA, Riegel BJ, Suzuki G, Valeti U, Canty JM. Mechanism of sudden cardiac death in pigs with viable chronically dysfunctional myocardium and ischemic cardiomyopathy. Am J Physiol 2005;289:H2688-96.

    CAS  Google Scholar 

  4. Kamimura R, Suzuki S, Nozaki S, Sakamoto H, Maruno H, Kawaida H. Branching patterns in coronary artery and ischemic areas induced by coronary arterial occlusion in the CLAWN miniature pig. Exp Anim 1996;45:149-53.

    Article  CAS  PubMed  Google Scholar 

  5. Huang Z, Ge J, Sun A, Wang Y, Zhang S, Cui J, et al. Ligating LAD with its whole length rather than diagonal branches as coordinates is more advisable in establishing stable myocardial infarction model of swine. Exp Anim 2010;59:431-9.

    Article  CAS  PubMed  Google Scholar 

  6. Teramoto N, Koshino K, Yokoyama I, Miyagawa S, Zeniya T, Hirano Y, et al. Experimental pig model of old myocardial infarction with long survival leading to chronic left ventricular dysfunction and remodeling as evaluated by PET. J Nucl Med 2011;52:761-8.

    Article  PubMed  Google Scholar 

  7. Knaapen P, Germans T, Knuuti J, Paulus WJ, Dijkmans PA, Allaart CP, et al. Myocardial energetics and efficiency: Current status of the noninvasive approach. Circulation 2007;115:918-27.

    Article  PubMed  Google Scholar 

  8. Armbrecht JJ, Buxton DB, Schelbert HR. Validation of [1-11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 1990;81:1594-605.

    Article  CAS  PubMed  Google Scholar 

  9. Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687-96.

    Article  CAS  PubMed  Google Scholar 

  10. Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol 1988;12:1054-63.

    Article  CAS  PubMed  Google Scholar 

  11. Gropler RJ. Noninvasive measurements of myocardial oxygen consumption—Can we do better? J Am Coll Cardiol 2003;41:468-70.

    Article  PubMed  Google Scholar 

  12. Kalff V, Hicks RJ, Hutchins G, Topol E, Schwaiger M. Use of carbon-11 acetate and dynamic positron emission tomography to assess regional myocardial oxygen consumption in patients with acute myocardial infarction receiving thrombolysis or coronary angioplasty. Am J Cardiol 1993;71:529-35.

    Article  CAS  PubMed  Google Scholar 

  13. Walsh MN, Geltman EM, Brown MA, Henes CG, Weinheimer CJ, Sobel BE, et al. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 1989;30:1798-808.

    CAS  PubMed  Google Scholar 

  14. Ohte N, Narita H, Iida A, Wakami K, Asada K, Fukuta H, et al. Impaired myocardial oxidative metabolism in the remote normal region in patients in the chronic phase of myocardial infarction and left ventricular remodeling. J Nucl Cardiol 2009;16:73-81.

    Article  PubMed  Google Scholar 

  15. Ohte N, Kurokawa K, Iida A, Narita H, Akita S, Yajima K, et al. Myocardial oxidative metabolism in remote normal regions in the left ventricles with remodeling after myocardial infarction: Effect of beta-adrenoceptor blockers. J Nucl Med 2002;43:780-5.

    CAS  PubMed  Google Scholar 

  16. Opie LH, Knuuti J. The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol 2009;54:1637-46.

    Article  CAS  PubMed  Google Scholar 

  17. Beanlands RS, Schwaiger M. Changes in myocardial oxygen consumption and efficiency with heart failure therapy measured by 11C acetate PET. Can J Cardiol 1995;11:293-300.

    CAS  PubMed  Google Scholar 

  18. Greupner J, Zimmermann E, Grohmann A, Dübel H-P, Althoff TF, Althoff T, et al. Head-to-head comparison of left ventricular function assessment with 64-row computed tomography, biplane left cine ventriculography, and both 2- and 3-dimensional transthoracic echocardiography: Comparison with magnetic resonance imaging as the reference s. J Am Coll Cardiol 2012;59:1897-907.

    Article  PubMed  Google Scholar 

  19. Wu Y, Chan CW, Nicholls JM, Liao S, Tse HF, Wu EX. MR study of the effect of infarct size and location on left ventricular functional and microstructural alterations in porcine models. J Magn Reson 2009;29:305-12.

    Article  Google Scholar 

  20. Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 2001;23:291-9.

    CAS  PubMed  Google Scholar 

  21. Iida H, Rhodes CG, De SR, Araujo LI, Bloomfield PM, Lammertsma AA, et al. Use of the left ventricular time-activity curve as a noninvasive input function in dynamic oxygen-15-water positron emission tomography. J Nucl Med 1992;33:1669-77.

    CAS  PubMed  Google Scholar 

  22. Sorensen J, Valind S, Andersson LG. Simultaneous quantification of myocardial perfusion, oxidative metabolism, cardiac efficiency and pump function at rest and during supine bicycle exercise using 1-11C-acetate PET—A pilot study. Clin Physiol Funct Imaging 2010;30:279-84.

    Article  PubMed  Google Scholar 

  23. Van den Hoff J, Burchert W, Borner AR, Fricke H, Kuhnel G, Meyer GJ, et al. [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med 2001;42:1174-82.

    PubMed  Google Scholar 

  24. Wolpers HG, Burchert W, van den Hoff J, Weinhardt R, Meyer GJ, Lichtlen PR. Assessment of myocardial viability by use of 11C-acetate and positron emission tomography. Threshold criteria of reversible dysfunction. Circulation 1997;95:1417-24.

    Article  CAS  PubMed  Google Scholar 

  25. Ukkonen H, Tops L, Saraste A, Naum A, Koistinen J, Bax J, et al. The effect of right ventricular pacing on myocardial oxidative metabolism and efficiency: Relation with left ventricular dyssynchrony. Eur J Nucl Med Mol Imaging 2009;36:2042-8.

    Article  CAS  PubMed  Google Scholar 

  26. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.

    Article  PubMed  Google Scholar 

  27. Ishikawa K, Ladage D, Takewa Y, Yaniz E, Chen J, Tilemann L, et al. Development of a preclinical model of ischemic cardiomyopathy in swine. Am J Physiol 2011;301:H530-7.

    Article  CAS  Google Scholar 

  28. Fish KM, Ladage D, Kawase Y, Karakikes I, Jeong D, Ly H, et al. AAV9.I-1c delivered via direct coronary infusion in a porcine model of heart failure improves contractility and mitigates adverse remodeling. Circ Heart Fail 2013;6:310-7.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Shen Y-T, Vatner SF. Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs: Hibernation versus stunning? Circ Res 1995;76:479-88.

    Article  CAS  PubMed  Google Scholar 

  30. Schuleri KH, Centola M, Choi SH, Evers KS, Dawoud F, George RT, et al. CT for evaluation of myocardial cell therapy in heart failure: A comparison with CMR imaging. JACC Cardiovasc Imaging 2011;4:1284-93.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Witschey WRT, Zsido GA, Koomalsingh K, Kondo N, Minakawa M, Shuto T, et al. In vivo chronic myocardial infarction characterization by spin locked cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:37.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rissanen TT, Nurro J, Halonen PJ, Tarkia M, Saraste A, Rannankari M, et al. The bottleneck stent model for chronic myocardial ischemia and heart failure in pigs. Am J Physiol 2013. doi:10.1152/ajpheart.00561.2013.

    Google Scholar 

  33. Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation 2000;101:2981-8.

    Article  CAS  PubMed  Google Scholar 

  34. Lorell BH, Carabello BA. Left ventricular hypertrophy: Pathogenesis, detection, and prognosis. Circulation 2000;102:470-9.

    Article  CAS  PubMed  Google Scholar 

  35. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215-62.

    CAS  PubMed  Google Scholar 

  36. Nakano K, Sugawara M, Tamiya K, Satomi G, Koyanagi H. A new approach to defining regional work of the ventricle and evaluating regional cardiac function: Mean wall stress-natural logarithm of reciprocal of wall thickness relationship. Heart Vessel 1986;2:74-80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff of the Turku PET Centre for performing the required PET imaging and laboratory measurements. The authors would also like to thank Mrs Liisa Lempiäinen for the preparation of histological samples, M.Sc. Juho Virtanen for developing histological analysis methods, and Ms Piia Tuomisto for helping in animal experiments.

Disclosure

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miikka Tarkia MSc.

Additional information

Funding

This work was supported by Tekes—the Finnish Funding Agency for Technology Innovation, by the Finnish Cultural Foundation and Finnish foundation for cardiovascular research. It was conducted in the Finnish Centre of Excellence in Cardiovascular and Metabolic Diseases supported by the Academy of Finland, University of Turku, Turku University Hospital, and Åbo Akademi University. Miikka Tarkia is a PhD student supported by the University of Turku Graduate School Drug Research Doctoral Programme.

See related editorials, doi:10.1007/s12350-015-0081-z and doi:10.1007/s12350-015-0078-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarkia, M., Stark, C., Haavisto, M. et al. Cardiac remodeling in a new pig model of chronic heart failure: Assessment of left ventricular functional, metabolic, and structural changes using PET, CT, and echocardiography. J. Nucl. Cardiol. 22, 655–665 (2015). https://doi.org/10.1007/s12350-015-0068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0068-9

Keywords

Navigation