Skip to main content
Log in

Data-driven respiratory motion tracking and compensation in CZT cameras: A comprehensive analysis of phantom and human images

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

This study described a method for tracking and compensating respiratory motion in cadmium-zinc-telluride (CZT) cameras. We evaluated motion effects on myocardial perfusion imaging and assessed the usefulness of motion compensation in phantom and clinical studies.

Methods

SPECT studies were obtained from an oscillating heart phantom and 552 patients using CZT cameras with list-mode acquisition. Images were reformatted in 500-ms frames, and the activity centroid was calculated as respiratory signal. The myocardial perfusion, left ventricular (LV) wall thickness, and LV volume were assessed before and after the motion compensation technique.

Results

In phantom studies, we documented only minimal bias between simulated and measured shifts. Significantly reduced tracer activity, increased wall thickness and decreased volume in scans with 15 mm or more axial shifts were noted. In clinical studies, there was a higher prevalence of significant motion after treadmill exercise. The motion compensation technique could successfully compensate those motion artifacts.

Conclusion

The described method allows for tracking and compensating respiratory motion in CZT cameras. Significant respiratory motion is still not uncommon using CZT cameras, especially in patients who underwent treadmill tests. Motion blurring can be compensated using image processing techniques and image quality could be significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Agarwal V, DePuey EG. Myocardial perfusion SPECT horizontal motion artifact. J Nucl Cardiol 2014 [Epub ahead of print].

  2. Koshino K, Watabe H, Enmi J, Hirano Y, Zeniya T, Hasegawa S, et al. Effects of patient movement on measurements of myocardial blood flow and viability in resting (15)O-water PET studies. J Nucl Cardiol 2012;19:524-33.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Friedman J, Van Train K, Maddahi J, Rozanski A, Prigent F, Bietendorf J, et al. “Upward creep” of the heart: A frequent source of false-positive reversible defects during thallium-201 stress-redistribution SPECT. J Nucl Med 1989;30:1718-22.

    CAS  PubMed  Google Scholar 

  4. Cooper JA, Neumann PH, McCandless BK. Effect of patient motion on tomographic myocardial perfusion imaging. J Nucl Med 1992;33:1566-71.

    CAS  PubMed  Google Scholar 

  5. Cho K, Kumiata S, Okada S, Kumazaki T. Development of respiratory gated myocardial SPECT system. J Nucl Cardiol 1999;6:20-8.

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: Kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med 1995;33:713-9.

    Article  CAS  PubMed  Google Scholar 

  7. Livieratos L, Rajappan K, Stegger L, Schafers K, Bailey DL, Camici PG. Respiratory gating of cardiac PET data in list-mode acquisition. Eur J Nucl Med Mol Imaging 2006;33:584-8.

    Article  PubMed  Google Scholar 

  8. Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, et al. Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002;43:876-81.

    PubMed  Google Scholar 

  9. Kovalski G, Israel O, Keidar Z, Frenkel A, Sachs J, Azhari H. Correction of heart motion due to respiration in clinical myocardial perfusion SPECT scans using respiratory gating. J Nucl Med 2007;48:630-6.

    Article  PubMed  Google Scholar 

  10. Bruyant PP, King MA, Pretorius PH. Correction of the respiratory motion of the heart by tracking of the center of mass of thresholded projections: A simulation study using the dynamic MCAT phantom. IEEE Trans Nucl Sci 2002;49:2159-66.

    Article  Google Scholar 

  11. Feng B, Bruyant PP, Pretorius PH, Beach RD, Gifford HC, Dey J, et al. Estimation of the rigid-body motion from three-dimensional images using a generalized center-of-mass points approach. IEEE Trans Nucl Sci 2006;53:2712-8.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Buther F, Dawood M, Stegger L, Wubbeling F, Schafers M, Schober O, et al. List mode-driven cardiac and respiratory gating in PET. J Nucl Med 2009;50:674-81.

    Article  PubMed  Google Scholar 

  13. Bundschuh RA, Martinez-Moeller A, Essler M, Martinez MJ, Nekolla SG, Ziegler SI, et al. Postacquisition detection of tumor motion in the lung and upper abdomen using list-mode PET data: A feasibility study. J Nucl Med 2007;48:758-63.

    Article  PubMed  Google Scholar 

  14. Ueda Y, Kudomi S, Koike M, Oishi Y, Iwanaga H, Ueda K. Correction of liver displacement due to irregular respiration for SPECT images obtained using a multiple short-time acquisition with breath-holding technique. Radiol Phys Technol 2012;5:71-7.

    Article  PubMed  Google Scholar 

  15. Schleyer PJ, O’Doherty MJ, Barrington SF, Marsden PK. Retrospective data-driven respiratory gating for PET/CT. Phys Med Biol 2009;54:1935-50.

    Article  PubMed  Google Scholar 

  16. Kesner AL, Bundschuh RA, Detorie NC, Dahlbom M, Ziegler SI, Czernin J, et al. Respiratory gated PET derived in a fully automated manner from raw PET data. IEEE Trans Nucl Sci 2009;56:677-86.

    Article  Google Scholar 

  17. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-902.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Buechel RR, Herzog BA, Husmann L, Burger IA, Pazhenkottil AP, Treyer V, et al. Ultrafast nuclear myocardial perfusion imaging on a new gamma camera with semiconductor detector technique: First clinical validation. Eur J Nucl Med Mol Imaging 2010;37:773-8.

    Article  PubMed  Google Scholar 

  19. Songy B, Lussato D, Guernou M, Queneau M, Geronazzo R. Comparison of myocardial perfusion imaging using thallium-201 between a new cadmium-zinc-telluride cardiac camera and a conventional SPECT camera. Clin Nucl Med 2011;36:776-80.

    Article  PubMed  Google Scholar 

  20. Kovalski G, Keidar Z, Frenkel A, Israel O, Azhari H. Correction for respiration artefacts in myocardial perfusion SPECT is more effective when reconstructions supporting collimator detector response compensation are applied. J Nucl Cardiol 2009;16:949-55.

    Article  PubMed  Google Scholar 

  21. Bergen J, Anandan P, Hanna K, Hingorani R. Hierarchical model-based motion estimation. In: Sandini G, editor. Computer vision—ECCV’92. Berlin: Springer; 1992. p. 237-52.

    Google Scholar 

  22. Dey J, King MA. Theoretical and numerical study of MLEM and OSEM reconstruction algorithms for motion correction in emission tomography. IEEE Trans Nucl Sci 2009;56:2739-49.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Green PJ. Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans Med Imaging 1990;9:84-93.

    Article  CAS  PubMed  Google Scholar 

  24. Sohlberg A, Kuikka JT, Ruotsalainen U. Pinhole single-photon emission tomography reconstruction based on median root prior. Eur J Nucl Med Mol Imaging 2003;30:217-21.

    Article  PubMed  Google Scholar 

  25. Wu YW, Yen RF, Chieng PU, Huang PJ. Tl-201 myocardial SPECT in differentiation of ischemic from nonischemic dilated cardiomyopathy in patients with left ventricular dysfunction. J Nucl Cardiol 2003;10:369-74.

    Article  PubMed  Google Scholar 

  26. Dey J, Segars WP, Pretorius PH, Walvick RP, Bruyant PP, Dahlberg S, et al. Estimation and correction of cardiac respiratory motion in SPECT in the presence of limited-angle effects due to irregular respiration. Med Phys 2010;37:6453-65.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Beach RD, Depold H, Boening G, Bruyant PP, Feng B, Gifford HC, et al. An adaptive approach to decomposing patient-motion tracking data acquired during cardiac SPECT imaging. IEEE Trans Nucl Sci 2007;54:130-9.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Kovalski G, Keidar Z, Frenkel A, Sachs J, Attia S, Azhari H. Dual, “motion-frozen heart” combining respiration and contraction compensation in clinical myocardial perfusion SPECT imaging. J Nucl Cardiol 2009;16:396-404.

    Article  PubMed  Google Scholar 

  29. Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by m-mode ultrasonography: Methods, reproducibility, and normal values. Chest 2009;135:391-400.

    Article  PubMed  Google Scholar 

  30. Harris RS, Giovannetti M, Kim BK. Normal ventilatory movement of the right hemidiaphragm studied by ultrasonography and pneumotachography. Radiology 1983;146:141-4.

    Article  CAS  PubMed  Google Scholar 

  31. Karacalioglu AO, Jata B, Kilic S, Arslan N, Ilgan S, Ozguven MA. A physiologic approach to decreasing upward creep of the heart during myocardial perfusion imaging. J Nucl Med Technol 2006;34:215-9.

    PubMed  Google Scholar 

  32. Buechel RR, Pazhenkottil AP, Herzog BA, Husmann L, Nkoulou RN, Burger IA, et al. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera. Eur J Nucl Med Mol Imaging 2010;37:1903-8.

    Article  PubMed  Google Scholar 

  33. Buechel RR, Husmann L, Pazhenkottil AP, Nkoulou R, Herzog BA, Burger IA, et al. Myocardial perfusion imaging with real-time respiratory triggering: Impact of inspiration breath-hold on left ventricular functional parameters. J Nucl Cardiol 2010;17:848-52.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by Grants NSC 100-2314-B-002-158 and NSC 101-2314-B-002-151-MY3 from National Science Council of Taiwan.

Disclosure

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Wen Wu MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, CL., Wu, YW., Cheng, MF. et al. Data-driven respiratory motion tracking and compensation in CZT cameras: A comprehensive analysis of phantom and human images. J. Nucl. Cardiol. 22, 308–318 (2015). https://doi.org/10.1007/s12350-014-9963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-014-9963-8

Keywords

Navigation