Skip to main content
Log in

Assessment of coronary heart disease by CT angiography: Current and evolving applications

  • Advances in Nonnuclear Imaging Technologies
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Computed tomography angiography (CTA) of the heart is a rapidly evolving application for comprehensive assessment of coronary arterial anatomy, myocardial function, perfusion, and myocardial viability. Thus, cardiac CTA is capable of retrieving the most critical information for guiding the management of patients with suspected coronary heart disease (CHD). Ongoing technologic advancements have allowed acquiring such information within minutes, at radiation doses that are lower than those from conventional computed tomography imaging or common nuclear imaging techniques. Cardiac CTA has positioned itself as an imaging modality that may be well suited to fulfill central needs of cardiovascular medicine. This article reviews the evidence for the clinical utility of cardiac CTA in patients with suspected CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics—2011 update: A report from the American Heart Association. Circulation 2011;123:e18-209.

    Google Scholar 

  2. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation 2011;123:933-44.

    Google Scholar 

  3. Shaw LJ, Marwick TH, Zoghbi WA, Hundley WG, Kramer CM, Achenbach S, et al. Why all the focus on cardiac imaging? JACC Cardiovasc Imaging 2010;3:789-94.

    Article  PubMed  Google Scholar 

  4. GAO, Medicare part B imaging services: Rapid spending growth and shift to physician offices indicate need for CMS to consider additional management practices. http://www.gao.gov/new.items/d08452.pdf. Accessed 14 December 2011.

  5. Budoff MJ, Rasouli ML, Shavelle DM, Gopal A, Gul KM, Mao SS, et al. Cardiac CT angiography (CTA) and nuclear myocardial perfusion imaging (MPI): A comparison in detecting significant coronary artery disease. Acad Radiol 2007;14(3):252-7.

    Article  PubMed  Google Scholar 

  6. Ravipati G, Aronow WS, Lai H, Shao J, DeLuca AJ, Weiss MB, et al. Comparison of sensitivity, specificity, positive predictive value, and negative predictive value of stress testing versus 64-multislice coronary computed tomography angiography in predicting obstructive coronary artery disease diagnosed by coronary angiography. Am J Cardiol 2008;101(6):774-5.

    Article  PubMed  Google Scholar 

  7. Gaemperli O, Schepis T, Valenta I, Koepfli P, Husmann L, Scheffel H, et al. Functionally relevant coronary artery disease: Comparison of 64-section CT angiography with myocardial perfusion SPECT. Radiology 2008;248(2):414-23.

    Article  PubMed  Google Scholar 

  8. von Ballmoos MW, Haring B, Juillerat P, Alkadhi H. Meta-analysis: Diagnostic performance of low-radiation-dose coronary computed tomography angiography. Ann Intern Med 2011;154(6):413-20.

    Google Scholar 

  9. Mowatt G, Cook JA, Hillis GS, Walker S, Fraser C, Jia X, et al. 64-Slice computed tomography angiography in the diagnosis and assessment of coronary artery disease: Systematic review and meta-analysis. Heart 2008;94(11):1386-93.

    Article  PubMed  CAS  Google Scholar 

  10. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter ACCURACY. J Am Coll Cardiol 2008;52(21):1724-32.

    Article  PubMed  Google Scholar 

  11. Arbab-Zadeh A, Miller JM, Rochitte CE, Dewey M, Niinuma H, Gottlieb I, et al. Diagnostic accuracy of CT coronary angiography according to pretest probability of coronary artery disease and severity of coronary arterial calcification: The CorE-64 international, multicenter study. J Am Coll Cardiol 2012;59:379-87.

    Article  PubMed  Google Scholar 

  12. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: A prospective, multicenter, multivendor study. J Am Coll Cardiol 2008;52:2135-44.

    Article  PubMed  Google Scholar 

  13. Voros S, Rinehart S, Qian Z, Vazquez G, Anderson H, Murrieta L, et al. Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: Results from the ATLANTA I study. JACC Cardiovasc Interv 2011;4(2):198-208.

    Article  PubMed  Google Scholar 

  14. Nissen SE. Limitations of computed tomography coronary angiography. J Am Coll Cardiol 2008;52(25):2145-7.

    Article  PubMed  Google Scholar 

  15. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005;46(3):552-7.

    Article  PubMed  Google Scholar 

  16. Arbab-Zadeh A, Hoe J. Quantification of coronary arterial stenoses by multidetector CT angiography in comparison with conventional angiography methods, caveats, and implications. JACC Cardiovasc Imaging 2011;4(2):191-202.

    Article  PubMed  Google Scholar 

  17. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: A comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 2005;46(1):147-54.

    Article  PubMed  Google Scholar 

  18. Pundziute G, Schuijf JD, Jukema JW, Decramer I, Sarno G, Vanhoenacker PK, et al. Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultrasound radiofrequency data analysis. JACC Cardiovasc Interv 2008;1(2):176-82.

    Article  PubMed  Google Scholar 

  19. Springer I, Dewey M. Comparison of multislice computed tomography with intravascular ultrasound for detection and characterization of coronary artery plaques: A systematic review. Eur J Radiol 2009;71(2):275-82.

    Article  PubMed  Google Scholar 

  20. Kashiwagi M, Tanaka A, Kitabata H, Tsujioka H, Kataiwa H, Komukai K, et al. Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 2009;2(12):1412-9.

    Article  PubMed  Google Scholar 

  21. Gauss S, Achenbach S, Pflederer T, Schuhbäck A, Daniel WG, Marwan M. Assessment of coronary artery remodelling by dual-source CT: A head-to-head comparison with intravascular ultrasound. Heart 2011;97(12):991-7.

    Article  PubMed  Google Scholar 

  22. Pflederer T, Marwan M, Schepis T, Ropers D, Seltmann M, Muschiol G, et al. Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis 2010;211(2):437-44.

    Article  PubMed  CAS  Google Scholar 

  23. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 2009;54(1):49-57.

    Article  PubMed  Google Scholar 

  24. Sato A, Ohigashi H, Nozato T, Hikita H, Tamura M, Miyazaki S, et al. Coronary artery spatial distribution, morphology and composition of nonculprit coronary plaques by 64-slice computed tomographic angiography in patients with acute myocardial infarction. Am J Cardiol 2010;105(7):930-5.

    Article  PubMed  Google Scholar 

  25. Naya M, Murthy VL, Blankstein R, Sitek A, Hainer J, Foster C, et al. Quantitative relationship between the extent and morphology of coronary atherosclerotic plaque and downstream myocardial perfusion. J Am Coll Cardiol 2011;58(17):1807-16.

    Article  PubMed  Google Scholar 

  26. Kitagawa T, Yamamoto H, Horiguchi J, Ohhashi N, Tadehara F, Shokawa T, et al. Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. J Am Coll Cardiol Cardiovasc Imaging 2009;2(2):153-60.

    Google Scholar 

  27. van Velzen JE, de Graaf FR, de Graaf MA, Schuijf JD, Kroft LJ, de Roos A, et al. Comprehensive assessment of spotty calcifications on computed tomography angiography: Comparison to plaque characteristics on intravascular ultrasound with radiofrequency backscatter analysis. J Nucl Cardiol 2011;18(5):893-903.

    Article  PubMed  Google Scholar 

  28. Stone GW, Maehara A, Lansky AJ, de Bruyne B, Cristea E, Mintz GS, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med 2011;364(3):226-35.

    Article  PubMed  CAS  Google Scholar 

  29. Arbab-Zadeh A, Nakano M, Virmani R, Fuster V. Acute coronary events. Circulation 2012;125(9):1147-56.

    Article  PubMed  Google Scholar 

  30. Dey D, Schepis T, Marwan M, Slomka PJ, Berman DS, Achenbach S. Automated three-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: Comparison with intravascular ultrasound. Radiology 2010;257(2):516-22.

    Article  PubMed  Google Scholar 

  31. Hulten EA, Carbonaro S, Petrillo SP, Mitchell JD, Villines TC. Prognostic value of cardiac computed tomography angiography: A systematic review and meta-analysis. J Am Coll Cardiol 2011;57(10):1237-47.

    Article  PubMed  Google Scholar 

  32. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, et al. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the international multicenter CONFIRM (coronary CT angiography evaluation for clinical outcomes: An international multicenter registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol 2011;58(8):849-60.

    Article  PubMed  Google Scholar 

  33. Rubinshtein R, Halon DA, Gaspar T, Jaffe R, Goldstein J, Karkabi B, et al. Impact of 64 slice cardiac computed tomographic angiography on clinical decision making in emergency department patients with chest pain of possible myocardial ischemic origin. Am J Cardiol 2007;100:1522-6.

    Article  PubMed  Google Scholar 

  34. Schlett CL, Banerji D, Siegel E, Bamberg F, Lehman SJ, Ferencik M, et al. Prognostic value of CT angiography for major adverse cardiac events in patients with acute chest pain from the emergency department: 2-year outcomes of the ROMICAT trial. JACC Cardiovasc Imaging 2011;4(5):481-91.

    Article  PubMed  Google Scholar 

  35. Goldstein JA, Chinnaiyan KM, Abidov A, Achenbach S, Berman DS, Hayes SW, et al. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial. J Am Coll Cardiol 2011;58(14):1414-22.

    Article  PubMed  Google Scholar 

  36. Litt HI, Gatsonis C, Snyder B, Singh H, Miller CD, Entrikin DW, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med 26 March 2012. [Epub ahead of print]

  37. Chow BJ, Wells GA, Chen L, Yam Y, Galiwango P, Abraham A, et al. Prognostic value of 64-slice cardiac computed tomography severity of coronary artery disease, coronary atherosclerosis, and left ventricular ejection fraction. J Am Coll Cardiol 2010;55(10):1017-28.

    Article  PubMed  Google Scholar 

  38. Ostrom MP, Gopal A, Ahmadi N, Nasir K, Yang E, Kakadiaris I, et al. Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. J Am Coll Cardiol 2008;52(16):1335-43.

    Article  PubMed  Google Scholar 

  39. Lin F, Shaw LJ, Berman DS, Callister TQ, Weinsaft JW, Wong FJ, et al. Multidetector computed tomography coronary artery plaque predictors of stress-induced myocardial ischemia by SPECT. Atherosclerosis 2008;197:700-9.

    Article  PubMed  CAS  Google Scholar 

  40. Gilard M, Le Gal G, Cornily JC, Vinsonneau U, Joret C, Pennec PY, et al. Midterm prognosis of patients with suspected coronary artery disease and normal multislice computed tomographic findings: A prospective management outcome study. Arch Intern Med 2007;167:1686-9.

    Article  PubMed  Google Scholar 

  41. Bamberg F, Sommer WH, Hoffmann V, Achenbach S, Nikolaou K, Conen D, et al. Meta-analysis and systematic review of the long-term predictive value of assessment of coronary atherosclerosis by contrast-enhanced coronary computed tomography angiography. J Am Coll Cardiol 2011;57(24):2426-36.

    Article  PubMed  Google Scholar 

  42. Lin FY, Shaw LJ, Dunning AM, Labounty TM, Choi JH, Weinsaft JW, et al. Mortality risk in symptomatic patients with nonobstructive coronary artery disease a prospective 2-center study of 2,583 patients undergoing 64-detector row coronary computed tomographic angiography. J Am Coll Cardiol 2011;58(5):510-9.

    Article  PubMed  Google Scholar 

  43. Min JK, Shaw LJ, Devereux RB, Okin PM, Weinsaft JW, Russo DJ, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol 2007;50:1161-70.

    Article  PubMed  Google Scholar 

  44. Chow BJ, Small G, Yam Y, Chen L, Achenbach S, Al-Mallah M, et al. Incremental prognostic value of cardiac computed tomography in coronary artery disease using CONFIRM: An international multicenter registry. Circ Cardiovasc Imaging 2011;4(5):463-72.

    Article  PubMed  Google Scholar 

  45. Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR appropriate use criteria 2010 appropriate use criteria for cardiac computed tomography: A report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation 2010;122(21):e525-55.

    Article  PubMed  Google Scholar 

  46. Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2011;32(23):2999-3054.

    Article  PubMed  Google Scholar 

  47. Arbab-Zadeh A. Stress testing and noninvasive coronary angiography in patients with suspected coronary artery disease: Time for a new paradigm. Heart Int 2012;7(1)e2:4-13.

    Article  Google Scholar 

  48. Min JK, Gilmore A, Budoff MJ, Berman DS, O’Day K. Cost-effectiveness of coronary CT angiography versus myocardial perfusion SPECT for evaluation of patients with chest pain and no known coronary artery disease. Radiology 2010;254(3):801-8.

    Article  PubMed  Google Scholar 

  49. Priest VL, Scuffham PA, Hachamovitch R, Marwick TH. Cost-effectiveness of coronary computed tomography and cardiac stress imaging in the emergency department: A decision analytic model comparing diagnostic strategies for chest pain in patients at low risk of acute coronary syndromes. JACC Cardiovasc Imaging 2011;4(5):549-56.

    Article  PubMed  Google Scholar 

  50. Shreibati JB, Baker LC, Hlatky MA. Association of coronary CT angiography or stress testing with subsequent utilization and spending among Medicare beneficiaries. J Am Med Assoc 2011;306(19):2128-36.

    Article  CAS  Google Scholar 

  51. Hachamovitch R, Nutter B, Hlatky MA, Shaw LJ, Ridner ML, Dorbala S, et al. Patient management after noninvasive cardiac imaging results from SPARC (study of myocardial perfusion and coronary anatomy imaging roles in coronary artery disease). J Am Coll Cardiol 2012;59(5):462-74.

    Article  PubMed  Google Scholar 

  52. Douglas PS, Budoff M, Tunis S, Woodard PK, Justman RA, Honigberg R. A new era for cardiovascular imaging? Implications of the revoked national coverage decision for CT angiography on future imaging reimbursement. JACC Cardiovasc Imaging 2008;1(3):398-403.

    Article  PubMed  Google Scholar 

  53. Hachamovitch R, Johnson JR, Hlatky MA, Cantagallo L, Johnson BH, Coughlan M, et al. The study of myocardial perfusion and coronary anatomy imaging roles in CAD (SPARC): Design, rationale, and baseline patient characteristics of a prospective, multicenter observational registry comparing PET, SPECT, and CTA for resource utilization and clinical outcomes. J Nucl Cardiol 2009;16(6):935-48.

    Article  PubMed  Google Scholar 

  54. Douglas P, Dolor R, Go A, Patel MR, Velazquez E, Lee K, et al. Prospective multicenter imaging study for evaluation of chest pain (PROMISE). http://clinicaltrials.gov/ct2/show/NCT01174550. Accessed 14 December 2011.

  55. Renker M, Ramachandra A, Schoepf UJ, Raupach R, Apfaltrer P, Rowe GW, et al. Iterative image reconstruction techniques: Applications for cardiac CT. J Cardiovasc Comput Tomogr 2011;5(4):225-30.

    Article  PubMed  Google Scholar 

  56. Scheffel H, Stolzmann P, Schlett CL, Engel LC, Major GP, Károlyi M, et al. Coronary artery plaques: Cardiac CT with model-based and adaptive-statistical iterative reconstruction technique. Eur J Radiol 2011;81(3):e363-9.

    Article  PubMed  Google Scholar 

  57. Karçaaltıncaba M, Aktaş A. Dual-energy CT revisited with multidetector CT: Review of principles and clinical applications. Diagn Interv Radiol 2011;17(3):181-94.

    PubMed  Google Scholar 

  58. Pichler P, Pichler-Cetin E, Vertesich M, Mendel H, Sochor H, Dock W, et al. Ivabradine versus metoprolol for heart rate reduction before coronary computed tomography angiography. Am J Cardiol 2012;109(2):169-73.

    Article  PubMed  CAS  Google Scholar 

  59. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol 2011;58(19):1989-97.

    Article  PubMed  Google Scholar 

  60. Belge B, Coche E, Pasquet A, Vanoverschelde JL, Gerber BL. Accurate estimation of global and regional cardiac function by retrospectively gated multidetector row computed tomography: Comparison with cine magnetic resonance imaging. Eur Radiol 2006;16(7):1424-33.

    Article  PubMed  Google Scholar 

  61. Akram K, Anderson HD, Voros S. Quantification of left ventricular parameters obtained by automated software for 64-slice multidetector computed tomography and comparison with magnetic resonance imaging. Cardiovasc Intervent Radiol 2009;32(6):1154-60.

    Article  PubMed  Google Scholar 

  62. Grude M, Juergens KU, Wichter T, Paul M, Fallenberg EM, Muller JG, et al. Evaluation of global left ventricular myocardial function with electrocardiogram-gated multidetector computed tomography: Comparison with magnetic resonance imaging. Invest Radiol 2003;38(10):653-61.

    Article  PubMed  Google Scholar 

  63. Yamamuro M, Tadamura E, Kubo S, Toyoda H, Nishina T, Ohba M, et al. Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: Comparison with echocardiography, SPECT, and MR imaging. Radiology 2005;234(2):381-90.

    Article  PubMed  Google Scholar 

  64. Mahnken AH, Koos R, Katoh M, Spuentrup E, Busch P, Wildberger JE, et al. Sixteen-slice spiral CT versus MR imaging for the assessment of left ventricular function in acute myocardial infarction. Eur Radiol 2005;15(4):714-20.

    Article  PubMed  Google Scholar 

  65. Cury RC, Nieman K, Shapiro MD, Butler J, Nomura CH, Ferencik M, et al. Comprehensive assessment of myocardial perfusion defects, regional wall motion, and left ventricular function by using 64-section multidetector CT. Radiology 2008;248(2):466-75.

    Article  PubMed  Google Scholar 

  66. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, et al. Quantitative assessment of left ventricular size and function: Side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 2006;114:654-61.

    Article  PubMed  Google Scholar 

  67. Raman SV, Shah M, McCarthy B, Garcia A, Ferketich AK. Multi-detector row cardiac computed tomography accurately quantifies right and left ventricularsize and function compared with cardiac magnetic resonance. Am Heart J 2006;151(3):736-44.

    Article  PubMed  Google Scholar 

  68. Takx RA, Moscariello A, Schoepf UJ, Barraza JM Jr, Nance JW Jr, Bastarrika G, et al. Quantification of left and right ventricular function and myocardial mass: Comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol 2012;81(4):e598-604.

    Article  PubMed  Google Scholar 

  69. Koch K, Oellig F, Oberholzer K, Bender P, Kunz P, Mildenberger P, et al. Assessment of right ventricular function by 16-detector-row CT: Comparison with magnetic resonance imaging. Eur Radiol 2005;15(2):312-8.

    Article  PubMed  CAS  Google Scholar 

  70. Bruners P, Mahnken AH, Knackstedt C, Luhmann N, Spüntrup E, Das M, et al. Assessment of global left and right ventricular function using dual-source computed tomography (DSCT) in comparison to MRI: An experimental study in a porcine model. Invest Radiol 2007;42(11):756-64.

    Article  PubMed  Google Scholar 

  71. Groves AM, Goh V, Rajasekharan S, Kayani I, Endozo R, Dickson JC, et al. CT coronary angiography: Quantitative assessment of myocardial perfusion using test bolus data-initial experience. Eur Radiol 2008;18:2155-63.

    Article  PubMed  Google Scholar 

  72. George RT, Jerosch-Herold M, Silva C, Kitagawa K, Bluemke DA, Lima JA, et al. Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest Radiol 2007;42:815-22.

    Article  PubMed  Google Scholar 

  73. Blankstein R, Shturman LD, Rogers IS, Rocha-Filho JA, Okada DR, Sarwar A, et al. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 2009;54(12):1072-84.

    Article  PubMed  Google Scholar 

  74. George RT, Arbab-Zadeh A, Miller JM, Kitagawa K, Chang HJ, Bluemke DA, et al. Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: A pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ Cardiovasc Imaging 2009;2(3):174-82.

    Article  PubMed  Google Scholar 

  75. Kurata A, Mochizuki T, Koyama Y, Haraikawa T, Suzuki J, Shigematsu Y, et al. Myocardial perfusion imaging using adenosine triphosphate stress multi-slice spiral computed tomography alternative to stress myocardial perfusion scintigraphy. Circ J 2005;69(5):550-7.

    Article  PubMed  Google Scholar 

  76. Patel AR, Lodato JA, Chandra S, Kachenoura N, Ahmad H, Freed BH, et al. Detection of myocardial perfusion abnormalities using ultra-low radiation dose regadenoson stress multidetector computed tomography. J Cardiovasc Comput Tomogr 2011;5(4):247-54.

    Article  PubMed  Google Scholar 

  77. Bauer RW, Kerl JM, Fischer N, Burkhard T, Larson MC, Ackermann H, et al. Dual-energy CT for the assessment of chronic myocardial infarction in patients with chronic coronary artery disease: Comparison with 3-T MRI. AJR Am J Roentgenol 2010;195(3):639-46.

    Article  PubMed  Google Scholar 

  78. Rubinshtein R, Miller TD, Williamson EE, Kirsch J, Gibbons RJ, Primak AN, et al. Detection of myocardial infarction by dual-source coronary computed tomography angiography using quantitated myocardial scintigraphy as the reference standard. Heart 2009;95(17):1419-22.

    Article  PubMed  CAS  Google Scholar 

  79. Nikolaou K, Sanz J, Poon M, Wintersperger BJ, Ohnesorge B, Rius T, et al. Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: Preliminary results. Eur Radiol 2005;15(5):864-71.

    Article  PubMed  Google Scholar 

  80. Daghini E, Primak AN, Chade AR, Zhu X, Ritman EL, McCollough CH, et al. Evaluation of porcine myocardial microvascular permeability and fractional vascular volume using 64-slice helical computed tomography (CT). Invest Radiol 2007;42(5):274-82.

    Article  PubMed  Google Scholar 

  81. Vavere AL, George RT, DiCarli M, Dewey M, Miller JM, Arbab-Zadeh A, et al. Diagnostic performance of combined non-invasive coronary angiography and myocardial perfusion imaging using 320 row detector computed tomography: Design and implementation of the CORE320 multicenter, multinational diagnostic study. J Cardiovasc Comput Tomogr 2011;5(6):370-81.

    Article  PubMed  Google Scholar 

  82. Schuleri KH, George RT, Lardo AC. Applications of cardiac multidetector CT beyond coronary angiography. Nat Rev Cardiol 2009;6(11):699-710.

    Article  PubMed  Google Scholar 

  83. Mahaken AH, Muhlenbruch G, Gunther RW, Wildberger JE. CT imaging of myocardial viability experimental and clinical evidence. Cardiovasc J Afr 2007;18(3):169-74.

    Google Scholar 

  84. Choe YH, Choo KS, Jeon ES, Gwon HC, Choi JH, Park JE. Comparison of MDCT and MRI in the detection and sizing of acute and chronic myocardial infarcts. Eur J Radiol 2008;66(2):292-9.

    Article  PubMed  Google Scholar 

  85. Nieman K, Shapiro MD, Ferencik M, Nomura CH, Abbara S, Hoffmann U, et al. Reperfused myocardial infarction: Contrast-enhanced 64-Section CT in comparison to MR imaging. Radiology 2008;247:49-56.

    Article  PubMed  Google Scholar 

  86. Gerber BL, Belge B, Legros GJ, Lim P, Poncelet A, Pasquet A, et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: Comparison with contrast-enhanced magnetic resonance. Circulation 2006;113:823-33.

    Article  PubMed  Google Scholar 

  87. Lardo AC, Cordeiro MA, Silva C, Amado LC, George RT, Saliaris AP, et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: Characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation 2006;113(3):394-404.

    Article  PubMed  Google Scholar 

  88. Gweon HM, Kim SJ, Kim TH, Lee SM, Hong YJ, Rim SJ, et al. Evaluation of reperfused myocardial infarction by low-dose multidetector computed tomography using prospective electrocardiography (ECG)-triggering: Comparison with magnetic resonance imaging. Yonsei Med J 2010;51(5):683-91.

    Article  PubMed  Google Scholar 

  89. Baks T, Cademartiri F, Moelker AD, Weustink AC, van Geuns RJ, Mollet NR, et al. Multislice computed tomography and magnetic resonance imaging for the assessment of reperfused acute myocardial infarction. J Am Coll Cardiol 2006;48:144-52.

    Article  PubMed  Google Scholar 

  90. Paul JF, Wartski M, Caussin C, Sigal-Cinqualbre A, Lancelin B, Angel C, et al. Late defect on delayed contrast-enhanced multi-detector row CT scans in the prediction of SPECT infarct size after reperfused acute myocardial infarction: Initial experience. Radiology 2005;236(2):485-9.

    Article  PubMed  Google Scholar 

  91. Schuleri KH, Centola M, George RT, Amado LC, Evers KS, Kitagawa K, et al. Characterization of peri-infarct zone heterogeneity by contrast-enhanced multidetector computed tomography: A comparison with magnetic resonance imaging. J Am Coll Cardiol 2009;53:1699-707.

    Article  PubMed  Google Scholar 

  92. Schuleri KH, Centola M, Choi SH, Evers KS, Dawoud F, George RT, et al. CT for evaluation of myocardial cell therapy in heart failure: A comparison with CMR imaging. JACC Cardiovasc Imaging 2011;4(12):1284-93.

    Article  PubMed  Google Scholar 

  93. Chang HJ, George RT, Schuleri KH, Evers K, Kitagawa K, Lima JA, et al. Prospective electrocardiogram-gated delayed enhanced multidetector computed tomography accurately quantifies infarct size and reduces radiation exposure. J Am Coll Cardiol Imaging 2009;2:412-20.

    Google Scholar 

Download references

Acknowledgments

The authors thank Kristine S. Evers for proofreading this manuscript.

Disclosures

Dr Arbab-Zadeh serves on the steering committee of the CORE320 international study, which is sponsored by Toshiba Medical Systems. No other potential conflicts are declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Arbab-Zadeh MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, A., Arbab-Zadeh, A. Assessment of coronary heart disease by CT angiography: Current and evolving applications. J. Nucl. Cardiol. 19, 796–806 (2012). https://doi.org/10.1007/s12350-012-9556-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-012-9556-3

Keywords

Navigation