Skip to main content

Advertisement

Log in

Constitutive HIF-1α Expression Blunts the Beneficial Effects of Cardiosphere-Derived Cell Therapy in the Heart by Altering Paracrine Factor Balance

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factor-1alpha (HIF-1α) expression promotes angiogenesis and can influence stem cell engraftment. We investigated the effect of stable over-expression of constitutively active HIF-1α on cardiosphere-derived cell (CDC) engraftment and left ventricular function. CDCs were transduced with a lentivirus expressing a constitutively active mutant of human HIF-1α (LVHIF-1α). Two million male rat CDCs were injected into the infarct following ligation of the mid-LAD in female syngeneic rats. Left ventricular ejection fraction (EF) and circumferential strain were measured by echocardiography at 1 and 4 weeks post-MI in the following groups: PBS group (n = 7), CELL group (n = 7), and CELL-HIF group (n = 7). HIF-1α, VEGF, endothelin-1 expression, and CDC engraftment were measured by quantitative PCR. At 30 days, EF was unchanged in the CELL-HIF group (p = NS), increased in the CELL group (p = 0.025), and decreased in the PBS group (p = 0.021), but engraftment was similar (2.4% ± 3.3% vs 1.7% ± 0.8%, p = NS). Mean circumferential strain of the infarcted region was unchanged in the CELL-HIF group, but improved in the CELL group (p = 0.02). Endothelin-1 and VEGF expression were higher in HIF-CDCs exposed to hypoxia, compared with non-transduced CDCs. HIF-1α expression in CDCs blunted the beneficial functional effects of CDC transplantation, suggesting that paracrine factor balance may play an important role in cardiac regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CDC:

Cardiophere-derived cells

HIF-1α:

Hypoxia-inducible factor-1alpha

VEGF:

Vascular endothelial growth factor

IL-1β:

Interleukin-1 beta IL-1β

ET-1:

Endothelin-1

eGFP:

Green fluorescent protein

qPCR:

Quantitative Polymerase Chain Reaction

References

  1. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705.

    Article  PubMed  CAS  Google Scholar 

  2. Terrovitis, J., Lautamaki, R., Bonios, M., Fox, J., Engles, J. M., Yu, J., et al. (2009). Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. Journal of the American College of Cardiology, 54(17), 1619–1626. doi:10.1016/j.jacc.2009.04.097.

    Article  PubMed  Google Scholar 

  3. Bartunek, J., Wijns, W., Heyndrickx, G. R., & Vanderheyden, M. (2006). Timing of intracoronary bone-marrow-derived stem cell transplantation after ST-elevation myocardial infarction. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S52–56.

    Article  PubMed  Google Scholar 

  4. Jiang, B. H., Rue, E., Wang, G. L., Roe, R., & Semenza, G. L. (1996). Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. The Journal of Biological Chemistry, 271(30), 17771–17778.

    Article  PubMed  CAS  Google Scholar 

  5. Sarkar, K., Fox-Talbot, K., Steenbergen, C., Bosch-Marce, M., & Semenza, G. L. (2009). Adenoviral transfer of HIF-1alpha enhances vascular responses to critical limb ischemia in diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 106(44), 18769–18774.

    Article  PubMed  CAS  Google Scholar 

  6. Rey, S., Lee, K., Wang, C. J., Gupta, K., Chen, S., McMillan, A., et al. (2009). Synergistic effect of HIF-1alpha gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20399–20404.

    Article  PubMed  CAS  Google Scholar 

  7. Semenza, G. L. (2010). Vascular responses to hypoxia and ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(4), 648–652.

    Article  PubMed  CAS  Google Scholar 

  8. Semenza, G. L. (2009). Regulation of vascularization by hypoxia-inducible factor 1. Annals of the New York Academy of Sciences, 1177, 2–8.

    Article  PubMed  CAS  Google Scholar 

  9. Rey, S., & Semenza, G. L. (2010). Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovascular Research, 86(2), 236–242.

    Article  PubMed  CAS  Google Scholar 

  10. Wang, G. L., & Semenza, G. L. (1993). Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. The Journal of Biological Chemistry, 268(29), 21513–21518.

    PubMed  CAS  Google Scholar 

  11. Semenza, G. L., Shimoda, L. A., & Prabhakar, N. R. (2006). Regulation of gene expression by HIF-1. Novartis Foundation Symposium, 272, 2–8. discussion 8–14, 33–16.

    Article  PubMed  CAS  Google Scholar 

  12. Kim, C. H., Cho, Y. S., Chun, Y. S., Park, J. W., & Kim, M. S. (2002). Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circulation Research, 90(2), E25–33.

    Article  PubMed  CAS  Google Scholar 

  13. Lee, S. H., Wolf, P. L., Escudero, R., Deutsch, R., Jamieson, S. W., & Thistlethwaite, P. A. (2000). Early expression of angiogenesis factors in acute myocardial ischemia and infarction. The New England Journal of Medicine, 342(9), 626–633.

    Article  PubMed  CAS  Google Scholar 

  14. Kelly, B. D., Hackett, S. F., Hirota, K., Oshima, Y., Cai, Z., Berg-Dixon, S., et al. (2003). Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circulation Research, 93(11), 1074–1081.

    Article  PubMed  CAS  Google Scholar 

  15. Patel, T. H., Kimura, H., Weiss, C. R., Semenza, G. L., & Hofmann, L. V. (2005). Constitutively active HIF-1alpha improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovascular Research, 68(1), 144–154.

    Article  PubMed  CAS  Google Scholar 

  16. Sutter, C. H., Laughner, E., & Semenza, G. L. (2000). Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proceedings of the National Academy of Sciences of the United States of America, 97(9), 4748–4753.

    Article  PubMed  CAS  Google Scholar 

  17. Yamakawa, M., Liu, L. X., Date, T., Belanger, A. J., Vincent, K. A., Akita, G. Y., et al. (2003). Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circulation Research, 93(7), 664–673.

    Article  PubMed  CAS  Google Scholar 

  18. Kizana, E., Chang, C. Y., Cingolani, E., Ramirez-Correa, G. A., Sekar, R. B., Abraham, M. R., et al. (2007). Gene transfer of connexin43 mutants attenuates coupling in cardiomyocytes: novel basis for modulation of cardiac conduction by gene therapy. Circulation Research, 100(11), 1597–1604.

    Article  PubMed  CAS  Google Scholar 

  19. Yingzhong, Y., Fan, W., Zhu, L., Zhao, T., Ma, L., Wu, Y., et al. (2008). Effects of hypoxia on mRNA expression of housekeeping genes in rat brain tissue and primary cultured neural cells. Fronteirs of Medicine in China, 2, 239–243.

    Article  Google Scholar 

  20. Chen, J., He, L., Dinger, B., Stensaas, L., & Fidone, S. (2002). Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 282(6), L1314–1323.

    PubMed  CAS  Google Scholar 

  21. Fukushima, S., Varela-Carver, A., Coppen, S. R., Yamahara, K., Felkin, L. E., Lee, J., et al. (2007). Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 115(17), 2254–2261.

    Article  PubMed  Google Scholar 

  22. Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annual Review, 11, 127–152.

    Article  PubMed  CAS  Google Scholar 

  23. Abraham, T. P., Laskowski, C., Zhan, W. Z., Belohlavek, M., Martin, E. A., Greenleaf, J. F., et al. (2003). Myocardial contractility by strain echocardiography: comparison with physiological measurements in an in vitro model. American Journal of Physiology. Heart and Circulatory Physiology, 285(6), H2599–2604. doi:10.1152/ajpheart.00994.2002.

    PubMed  CAS  Google Scholar 

  24. Urheim, S., Cauduro, S., Frantz, R., McGoon, M., Belohlavek, M., Green, T., et al. (2005). Relation of tissue displacement and strain to invasively determined right ventricular stroke volume. The American Journal of Cardiology, 96(8), 1173–1178. doi:10.1016/j.amjcard.2005.06.049.

    Article  PubMed  Google Scholar 

  25. Helm, R. H., Leclercq, C., Faris, O. P., Ozturk, C., McVeigh, E., Lardo, A. C., et al. (2005). Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation, 111(21), 2760–2767. doi:10.1161/CIRCULATIONAHA.104.508457.

    Article  PubMed  Google Scholar 

  26. Langeland, S., D’Hooge, J., Wouters, P. F., Leather, H. A., Claus, P., Bijnens, B., et al. (2005). Experimental validation of a new ultrasound method for the simultaneous assessment of radial and longitudinal myocardial deformation independent of insonation angle. Circulation, 112(14), 2157–2162. doi:10.1161/CIRCULATIONAHA.105.554006.

    Article  PubMed  Google Scholar 

  27. Koopman, L. P., Slorach, C., Hui, W., Manlhiot, C., McCrindle, B. W., Friedberg, M. K., et al. (2010). Comparison between different speckle tracking and color tissue Doppler techniques to measure global and regional myocardial deformation in children. Journal of the American Society of Echocardiography, 23(9), 919–928. doi:10.1016/j.echo.2010.06.014.

    Article  PubMed  Google Scholar 

  28. Stastna, M., Chimenti, I., Marban, E., & Van Eyk, J. E. (2010). Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes. Proteomics, 10(2), 245–253.

    Article  PubMed  CAS  Google Scholar 

  29. Belaidi, E., Joyeux-Faure, M., Ribuot, C., Launois, S. H., Levy, P., & Godin-Ribuot, D. (2009). Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea. Journal of the American College of Cardiology, 53(15), 1309–1317.

    Article  PubMed  CAS  Google Scholar 

  30. Watson, J. A., Watson, C. J., McCrohan, A. M., Woodfine, K., Tosetto, M., McDaid, J., et al. (2009). Generation of an epigenetic signature by chronic hypoxia in prostate cells. Human Molecular Genetics, 18(19), 3594–3604.

    Article  PubMed  CAS  Google Scholar 

  31. Dandel, M., Lehmkuhl, H., Knosalla, C., Suramelashvili, N., & Hetzer, R. (2009). Strain and strain rate imaging by echocardiography—basic concepts and clinical applicability. Current Cardiology Review, 5(2), 133–148.

    Article  Google Scholar 

  32. Bosch-Marce, M., Okuyama, H., Wesley, J. B., Sarkar, K., Kimura, H., Liu, Y. V., et al. (2007). Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia. Circulation Research, 101(12), 1310–1318.

    Article  PubMed  CAS  Google Scholar 

  33. Barth, A. S., Kizana, E., Smith, R. R., Terrovitis, J., Dong, P., Leppo, M. K., et al. (2008). Lentiviral vectors bearing the cardiac promoter of the Na+–Ca2+ exchanger report cardiogenic differentiation in stem cells. Molecular Therapy, 16(5), 957–964.

    Article  PubMed  CAS  Google Scholar 

  34. Lei, L., Mason, S., Liu, D., Huang, Y., Marks, C., Hickey, R., et al. (2008). Hypoxia-inducible factor-dependent degeneration, failure, and malignant transformation of the heart in the absence of the von Hippel–Lindau protein. Molecular and Cellular Biology, 28(11), 3790–3803.

    Article  PubMed  CAS  Google Scholar 

  35. Ke, Q., & Costa, M. (2006). Hypoxia-inducible factor-1 (HIF-1). Molecular Pharmacology, 70(5), 1469–1480.

    Article  PubMed  CAS  Google Scholar 

  36. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., et al. (1988). A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature, 332(6163), 411–415.

    Article  PubMed  CAS  Google Scholar 

  37. Hocher, B., George, I., Rebstock, J., Bauch, A., Schwarz, A., Neumayer, H. H., et al. (1999). Endothelin system-dependent cardiac remodeling in renovascular hypertension. Hypertension, 33(3), 816–822.

    PubMed  Google Scholar 

  38. Rebsamen, M. C., Church, D. J., Morabito, D., Vallotton, M. B., & Lang, U. (1997). Role of cAMP and calcium influx in endothelin-1-induced ANP release in rat cardiomyocytes. The American Journal of Physiology, 273(5 Pt 1), E922–931.

    PubMed  CAS  Google Scholar 

  39. Chimenti, I., Smith, R. R., Li, T. S., Gerstenblith, G., Messina, E., Giacomello, A., et al. (2010). Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circulation Research, 106(5), 971–980.

    Article  PubMed  CAS  Google Scholar 

  40. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103(11), 1204–1219.

    Article  PubMed  CAS  Google Scholar 

  41. Semenza, G. L. (2004). Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda), 19, 176–182.

    CAS  Google Scholar 

  42. Popovic, Z. B., Benejam, C., Bian, J., Mal, N., Drinko, J., Lee, K., et al. (2007). Speckle-tracking echocardiography correctly identifies segmental left ventricular dysfunction induced by scarring in a rat model of myocardial infarction. The American Journal of Physiology, 292(6), H2809–2816.

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Farhad Vesuna for help with qPCR, Lee Blosser from the Flow Cytometry Core Analytic Laboratory for help with flow cytometry, Ms. Dana Kemmer for administrative assistance, and Ms. Missy Leppo for helpful advice.

Sources of Funding

This study was supported by the WW Smith Foundation (West Conshohocken, PA; MRA), AHA (Dallas, TX; MRA), Maryland TEDCO (Columbia, MD; MRA), NIH RO1 HL092985 (Bethesda, MD; MRA/FB), and GE healthcare (Waukesha, WI).

Disclosures

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Roselle Abraham.

Additional information

Michael Bonios and Connie Y. Chang contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonios, M., Chang, C.Y., Terrovitis, J. et al. Constitutive HIF-1α Expression Blunts the Beneficial Effects of Cardiosphere-Derived Cell Therapy in the Heart by Altering Paracrine Factor Balance. J. of Cardiovasc. Trans. Res. 4, 363–372 (2011). https://doi.org/10.1007/s12265-011-9265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9265-3

Keywords

Navigation