Skip to main content
Log in

Auto-Bäcklund Transformation, Similarity Reductions and Solitons of an Extended (\(2+1\))-Dimensional Coupled Burgers System in Fluid Mechanics

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Burgers-type equations are seen in cosmology, hydrodynamics, plasma physics, hurricane dynamics, statistical dynamics, traffic modelling, etc. For an extended (\(2+1\))-dimensional coupled Burgers system in fluid mechanics, concerning the velocity components in the fluid-related problems, our symbolic computation brings forth an auto-Bäcklund transformation with some solitons, and two sets of the similarity reductions. Our results rely on the coefficients in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Other types of the nonlinear models could be seen [17,18,19,20,21,22,23,24,25,26,27,28, 28, 29].

  2. More fluid-mechanics discussions have been presented [46,47,48,49,50,51,52,53,54,55,56,57,58,59,60].

  3. We make clear that the similarity reduction in Ref. [6] is different from the ones in this paper, while different models than System (4) in this paper have been studied elsewhere [3,4,5, 76].

  4. Other types of the auto-Bäcklund transformations could be seen, e.g., the bilinear auto-Bäcklund transformations [77,78,79,80,81,82,83,84]

  5. which is different from that in Ref. [6]

  6. similar to those in Refs. [85,86,87,88,89]

  7. details ignored

  8. By the way, the one reported in Ref. [6] is steady. Presently-interesting symbolic-computation contributions can be seen in Refs. [63, 74, 92, 93].

References

  1. Leta, T.D., Liu, W., Rezazadeh, H., Ding, J., El Achab, A.: Analytical traveling wave and soliton solutions of the (\(2+1\)) dimensional generalized Burgers-Huxley equation. Qual. Theory Dyn. Syst. 20, 90 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Chentouf, B.: Qualitative analysis of the dynamic for the nonlinear Korteweg-de Vries equation with a boundary memory. Qual. Theory Dyn. Syst. 20, 36 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Gao, X.Y., Guo, Y.J., Shan, W.R.: Hetero-Bäcklund transformation, bilinear forms and \(N\) solitons for a generalized three-coupled Korteweg-de Vries system. Qual. Theory Dyn. Syst. 20, 87 (2021)

    MATH  Google Scholar 

  4. Gao, X.Y., Guo, Y.J., Shan, W.R.: Scaling and hetero-/auto-Bäcklund transformations with solitons of an extended coupled (\(2+1\))-dimensional Burgers system for the wave processes in hydrodynamics and acoustics. Mod. Phys. Lett. B 34, 2050389 (2020)

    Google Scholar 

  5. Gao, X.Y., Guo, Y.J., Shan, W.R.: In oceanography, acoustics and hydrodynamics: an extended coupled (\(2+1\))-dimensional Burgers system. Chin. J. Phys. 70, 264 (2021)

    MathSciNet  Google Scholar 

  6. Gao, X.Y., Guo, Y.J., Shan, W.R.: Hetero-Bäcklund transformation and similarity reduction of an extended (\(2+1\))-dimensional coupled Burgers system in fluid mechanics. Phys. Lett. A 384, 126788 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Osman, M.S., Baleanu, D., Adem, A.R., Hosseini, K., Mirzazadeh, M., Eslami, M.: Double-wave solutions and Lie symmetry analysis to the (\(2+1\))-dimensional coupled Burgers equations. Chin. J. Phys. 63, 122 (2020)

    MathSciNet  Google Scholar 

  8. Wang, G.W., Liu, Y.X., Han, S.X., Wang, H., Su, X.: Generalized symmetries and mCK method analysis of the (\(2+1\))-dimensional coupled Burgers equations. Symmetry 11, 1473 (2019)

    Google Scholar 

  9. Wazwaz, A.M.: Multiple-front solutions for the Burgers equation and the coupled Burgers equations. Appl. Math. Comput. 190, 1198 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Wang, G.W., Xu, T.Z., Biswas, A.: Topological solitons and conservation laws of the coupled Burgers equations. Rom. Rep. Phys. 66, 274 (2014)

    Google Scholar 

  11. Srivastava, V.K., Singh, S., Awasthi, M.K.: Numerical solutions of coupled Burgers’ equations by an implicit finite-difference scheme. AIP Adv. 3, 082131 (2013)

    Google Scholar 

  12. Siraj-ul-Islam, Sarler, B., Vertnik, R., Kosec, G.: Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers’ equations. Appl. Math. Model. 36, 1148 (2012)

  13. Ali, A., Siraj-ul-Islam, Haq, S.: A computational meshfree technique for the numerical solution of the two-dimensional coupled Burgers’ equations. Int. J. Comput. Methods Eng. Sci. Mech. 10, 406 (2009)

  14. Wang, G.W., Fakhar, K., Kara, A.H.: Soliton solutions and group analysis of a new coupled (\(2+1\))-dimensional Burgers equations. Acta Phys. Pol. B 46, 923 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. (2022). https://doi.org/10.1016/j.aml.2022.108094

  16. Gao, X.T., Tian, B., Feng, C.H.: Comment on “In oceanography, acoustics and hydrodynamics: An extended coupled (\(2+1\))-dimensional Burgers system” [Chin. J. Phys. 70, 264 (2021)]. Chin. J. Phys. (2022). https://doi.org/10.1016/j.cjph.2021.11.019

  17. Wang, M., Tian, B., Zhou, T.Y.: Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain. Chaos Solitons Fract. 152, 111411 (2021)

    MathSciNet  Google Scholar 

  18. Yang, D.Y., Tian, B., Hu, C.C., Liu, S.H., Shan, W.R., Jiang, Y.: Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber Wave. Random Complex (2022). https://doi.org/10.1080/17455030.2021.1983237

    Article  Google Scholar 

  19. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Liu, F.Y., Jia, T.T.: Darboux transformation, bright and dark-bright solitons of an N-coupled high-order nonlinear Schrödinger system in an optical fiber. Mod. Phys. Lett. B (2022). https://doi.org/10.1142/s0217984921505680

  20. Tian, H.Y., Tian, B., Zhang, C.R., Chen, S.S.: Darboux dressing transformation and superregular breathers for a coupled nonlinear Schrödinger system with the negative coherent coupling in a weakly birefringent fiber. Int. J. Comput. Math. 98, 2445 (2021)

    MathSciNet  MATH  Google Scholar 

  21. Wang, M., Tian, B.: Darboux transformation, generalized Darboux transformation and vector breather solutions for the coupled variable-coefficient cubic-quintic nonlinear Schrodinger system in a non-Kerr medium, twin-core nonlinear optical fiber or waveguide. Wave. Random Complex (2022). https://doi.org/10.1080/17455030.2021.1986649

    Article  Google Scholar 

  22. Yang, D.Y., Tian, B., Qu, Q.X., Du, X.X., Hu, C.C., Jiang, Y., Shan, W.R.: Lax pair, solitons, breathers and modulation instability of a three-component coupled derivative nonlinear Schrödinger system for a plasma. Eur. Phys. J. Plus 137, 189 (2022)

    Google Scholar 

  23. Lu, Y.L., Wei, G.M., Liu, X.: Lax Pair, improved \(\Gamma \)-Riccati Backlund transformation and soliton-like solutions to variable-coefficient higher-order nonlinear Schrodinger equation in optical fibers. Acta Appl. Math. 164, 185 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Wang, M., Tian, B.: In an inhomogeneous multicomponent optical fiber: Lax pair, generalized Darboux transformation and vector breathers for a three-coupled variable-coefficient nonlinear Schrödinger system. Eur. Phys. J. Plus 136, 1002 (2021)

    Google Scholar 

  25. Yang, D.Y., Tian, B., Tian, H.Y., Wei, C.C., Shan, W.R., Jiang, Y.: Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber. Chaos Solitons Fract. 156, 111719 (2022)

    Google Scholar 

  26. Yu, X., Sun, Z.Y.: Parabola solitons for the nonautonomous KP equation in fluids and plasmas. Ann. Phys. 367, 251 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Wang, M., Tian, B.: Lax pair, generalized Darboux transformation and solitonic solutions for a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber. Rom. J. Phys. 66, 119 (2021)

    Google Scholar 

  28. Yang, D.Y., Tian, B., Wang, M., Zhao, X., Shan, W.R., Jiang, Y.: Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or plasma. Nonlinear Dyn. 107, 2657 (2022)

    Google Scholar 

  29. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581 (2021)

    Google Scholar 

  30. Young, D.L., Fan, C.M., Hu, S.P., Atluri, S.N.: The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations. Eng. Anal. Bound. Elem. 32, 395 (2008)

    MATH  Google Scholar 

  31. Shankar, R., Singh, T.V., Bassaif, A.A.: Numerical solution of coupled burgers equations in inhomogeneous form. Int. J. Numer. Methods Fluids 20, 1263 (1995)

    MATH  Google Scholar 

  32. Bahadir, A.R.: A fully implicit finite-difference scheme for two-dimensional Burgers’ equations. Appl. Math. Comput. 137, 131 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Zafarghandi, F.S., Mohammadi, M., Babolian, E., Javadi, S.: A localized Newton basis functions meshless method for the numerical solution of the 2D nonlinear coupled Burgers’ equations. Int. J. Numer. Methods Heat Fluid Flow 27, 2582 (2017)

  34. Wubs, F.W., de Goede, E.D.: An explicit-implicit method for a class of time-dependent partial differential equations. Appl. Numer. Math. 9, 157 (1992)

    MathSciNet  MATH  Google Scholar 

  35. Fletcher, C.A.: Generating exact solutions of the two-dimensional Burgers’ equation. Int. J. Numer. Methods Fluids 3, 213 (1983)

    MATH  Google Scholar 

  36. Abazari, R., Borhanifar, A.: Numerical study of the solution of the Burgers and coupled Burgers equations by a differential transformation method. Comput. Math. Appl. 59, 2711 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Abdou, M.A., Soliman, A.A.: On completely integrable coupled Burgers and coupled Korteweg-de Vries systems. Appl. Math. Lett. 25, 2052 (2012)

    MathSciNet  MATH  Google Scholar 

  38. El-Sayed, S.M., Kaya, D.: On the numerical solution of the system of two-dimensional Burgers’ equations by the decomposition method. Appl. Math. Comput. 158, 101 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Lv, Z.S., Zhang, H.Q.: New applications of a further extended tanh method. Phys. Lett. A 324, 293 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Ma, Z.Y., Wu, X.F., Zhu, J.M.: Multisoliton excitations for the Kadomtsev-Petviashvili equation and the coupled Burgers equation. Chaos Solitons Fract. 31, 648 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Ma, Z.Y., Fei, J.X., Chen, Y.M.: The residual symmetry of the (\(2+1\))-dimensional coupled Burgers equation. Appl. Math. Lett. 37, 54 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Wang, Q., Song, L.N., Zhang, H.Q.: A new coupled sub-equations expansion method and novel complexiton solutions of (\(2+1\))-dimensional Burgers equation. Appl. Math. Comput. 186, 632 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Lei, Y., Yang, D.: Finite symmetry transformation group and localized structures of (\(2+1\))-dimensional coupled Burgers equation. Chin. Phys. B 22, 040202 (2013)

    Google Scholar 

  44. Wazwaz, A.M.: Multiple kink solutions and multiple singular kink solutions for the (\(2+1\))-dimensional Burgers equations. Appl. Math. Comput. 204, 817 (2008)

    MathSciNet  MATH  Google Scholar 

  45. El-Sayed, M.F., Moatimid, G.M., Moussa, M.H., El-Shiekh, R.M., El-Satar, A.A.: Symmetry group analysis and similarity solutions for the (\(2+1\))-dimensional coupled Burger’s system. Math. Methods Appl. Sci. 37, 1113 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Ding, C.C., Gao, Y.T., Hu, L., Deng, G.F., Zhang, C.Y.: Vector bright soliton interactions of the two-component AB system in a baroclinic fluid. Chaos Solitons Fract. 142, 110363 (2021)

    MathSciNet  MATH  Google Scholar 

  47. Liu, F.Y., Gao, Y.T., Yu, X., Hu, L., Wu, X.H.: Hybrid solutions for the (\(2+1\))-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Chaos Solitons Fract. 152, 111355 (2021)

    MathSciNet  Google Scholar 

  48. Hu, L., Gao, Y.T., Jia, S.L., Su, J.J., Deng, G.F.: Solitons for the (\(2+1\))-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique. Mod. Phys. Lett. B 33, 1950376 (2019)

    MathSciNet  Google Scholar 

  49. Wang, M., Tian, B., Qu, Q.X., Zhao, X.H., Zhang, Z., Tian, H.Y.: Lump, lumpoff, rogue wave, breather wave and periodic lump solutions for a (\(3+1\))-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics and plasma physics. Int. J. Comput. Math. 97, 2474 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Shen, Y., Tian, B., Zhou, T.Y.: In nonlinear optics, fluid dynamics and plasma physics: symbolic computation on a (\(2+1\))-dimensional extended Calogero-Bogoyavlenskii-Schiff system. Eur. Phys. J. Plus 136, 572 (2021)

    Google Scholar 

  51. Gao, X.Y., Guo, Y.J., Shan, W.R.: Looking at an open sea via a generalized (2+1)-dimensional dispersive long-wave system for the shallow water: hetero-Bäcklund transformations, bilinear forms and N solitons. Eur. Phys. J. Plus 136, 893 (2021)

    Google Scholar 

  52. Hu, L., Gao, Y.T., Jia, T.T., Deng, G.F., Li, L.Q.: Higher-order hybrid waves for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique. Z. Angew. Math. Phys. 72, 75 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Wang, M., Tian, B., Sun, Y., Yin, H.M., Zhang, Z.: Mixed lump-stripe, bright rogue wave-stripe, dark rogue wave-stripe and dark rogue wave solutions of a generalized Kadomtsev-Petviashvili equation in fluid mechanics. Chin. J. Phys. 60, 440 (2019)

    MathSciNet  Google Scholar 

  54. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: Shallow-water-wave studies on a (2+1)-dimensional Hirota-Satsuma-Ito system: X-type soliton, resonant Y-type soliton and hybrid solutions. Chaos Solitons Fract. 157, 111861 (2022)

    MathSciNet  Google Scholar 

  55. Wang, M., Tian, B., Qu, Q.X., Du, X.X., Zhang, C.R., Zhang, Z.: Lump, lumpoff and rogue waves for a (2+1)-dimensional reduced Yu-Toda-Sasa-Fukuyama equation in a lattice or liquid. Eur. Phys. J. Plus 134, 578 (2019)

    Google Scholar 

  56. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (\(3+1\))-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. 108, 1599 (2022)

    Google Scholar 

  57. Wang, M., Tian, B.: Soliton, multiple-lump, and hybrid solutions for a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in plasma physics, fluid mechanics, and ocean dynamics. Rom. Rep. Phys. 73, 127 (2021)

    Google Scholar 

  58. Gao, X.Y., Guo, Y.J., Shan, W.R.: Oceanic long-gravity-water-wave investigations on a variable-coefficient nonlinear dispersive-wave system. Wave. Random Complex (2022). https://doi.org/10.1080/17455030.2022.2039419

  59. Hu, C.C., Tian, B., Zhao, X.: Rogue and lump waves for the (\(3+1\))-dimensional Yu-Toda-Sasa-Fukuyama equation in a liquid or lattice. Int. J. Mod. Phys. B 35, 2150320 (2021)

    Google Scholar 

  60. Cheng, C.D., Tian, B., Zhang, C.R., Zhao, X.: Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid. Nonlinear Dyn. 105, 2525 (2021)

    Google Scholar 

  61. Wang, M., Tian, B., Hu, C.C., Liu, S.H.: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber. Appl. Math. Lett. 119, 106936 (2021)

    MATH  Google Scholar 

  62. Liang, Y.Q., Wei, G.M., Li, X.N.: New variable separation solutions and nonlinear phenomena for the (2+1)-dimensional modified Korteweg -de Vries equation. Commun. Nonlinear Sci. Numer. Simulat. 16, 603 (2011)

    MathSciNet  MATH  Google Scholar 

  63. Yang, D.Y., Tian, B., Qu, Q.X., Zhang, C.R., Chen, S.S., Wei, C.C.: Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber. Chaos Solitons Fract. 150, 110487 (2021)

    MathSciNet  MATH  Google Scholar 

  64. Ding, C.C., Gao, Y.T., Yu, X., Liu, F.Y., Wu, X.H.: Three-wave resonant interactions: dark -bright -bright mixed N- and high-order solitons, breathers, and their structures. Wave. Random Complex (2022). https://doi.org/10.1080/17455030.2021.1976437

  65. Chen, S.S., Tian, B., Qu, Q.X., Li, H., Sun, Y., Du, X.X.: Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma. Chaos Solitons Fract. 148, 111029 (2021)

    MATH  Google Scholar 

  66. Shen, Y., Tian, B., Liu, S.H., Zhou, T.Y.: Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07252-6

    Article  Google Scholar 

  67. Yu, X., Sun, Z.Y.: Unconventional characteristic line for the nonautonomous KP equation. Appl. Math. Lett. 100, 106047 (2020)

    MathSciNet  MATH  Google Scholar 

  68. Sun, Z.Y., Yu, X.: Transport of Nonautonomous Solitons in Two-Dimensional Disordered Media, Ann. Phys. (Berlin) 529, 1600323 (2017)

  69. Li, L.Q., Gao, Y.T., Yu, X., Deng, G.F., Ding, C.C.: Gramian solutions and solitonic interactions of a (\(2+1\))-dimensional Broer-Kaup-Kupershmidt system for the shallow water. Int. J. Numer. Method. H. (2022). https://doi.org/10.1108/HFF-07-2021-0441

  70. Tian, H.Y., Tian, B., Sun, Y., Zhang, C.R.: Three-component coupled nonlinear Schrödinger system in a multimode optical fiber: Darboux transformation induced via a rank-two projection matrix. Commun. Nonlinear Sci. Numer. Simul. 107, 106097 (2022)

    MATH  Google Scholar 

  71. Gao, X.Y., Guo, Y.J., Shan, W.R.: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system. Appl. Math. Lett. 120, 107161 (2021)

    MATH  Google Scholar 

  72. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07211-1

    Article  Google Scholar 

  73. Gao, X.Y., Guo, Y.J., Shan, W.R., Yin, H.M., Du, X.X., Yang, D.Y.: Electromagnetic waves in a ferromagnetic film. Commun. Nonlinear Sci. Numer. Simul. 105, 106066 (2022)

    MathSciNet  MATH  Google Scholar 

  74. Zhou, T.Y., Tian, B., Chen, S.S., Wei, C.C., Chen, Y.Q.: Bäcklund transformations, Lax pair and solutions of the Sharma-Tasso-Olver-Burgers equation for the nonlinear dispersive waves. Mod. Phys. Lett. B 35, 2150421 (2021)

    Google Scholar 

  75. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C., Deng, G.F., Jia, T.T.: Painlevé analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation in fluid mechanics/plasma physics. Chaos Solitons Fract. 144, 110559 (2021)

    MATH  Google Scholar 

  76. Gao, X.Y., Guo, Y.J., Shan, W.R.: Bilinear forms through the binary Bell polynomials, \(N\) solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water. Commun. Theor. Phys. 72, 095002 (2020)

    MATH  Google Scholar 

  77. Ma, Y.X., Tian, B., Qu, Q.X., Wei, C.C., Zhao, X.: Bäcklund transformations, kink soliton, breather- and travelling-wave solutions for a (\(3+1\))-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. Chin. J. Phys. 73, 600 (2021)

    Google Scholar 

  78. Shen, Y., Tian, B., Gao, X.T.: Bilinear auto-Bäcklund transformation, soliton and periodic-wave solutions for a (\(2+1\))-dimensional generalized Kadomtsev-Petviashvili system in fluid mechanics and plasma physics. Chin. J. Phys. (2022). https://doi.org/10.1016/j.cjph.2021.11.025

    Article  Google Scholar 

  79. Li, L.Q., Gao, Y.T., Yu, X., Jia, T.T., Hu, L., Zhang, C.Y.: Bilinear forms, bilinear Bäcklund transformation, soliton and breather interactions of a damped variable-coefficient fifth-order modified Korteweg-de Vries equation for the surface waves in a strait or large channel. Chin. J. Phys. 77, 915 (2022)

    Google Scholar 

  80. Shen, Y., Tian, B., Cheng, C.D., Zhou, T.Y.: Bilinear auto-Bäcklund transformation, breather-wave and periodic-wave solutions for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Eur. Phys. J. Plus 136, 1159 (2021)

    Google Scholar 

  81. Ma, Y.X., Tian, B., Qu, Q.X., Tian, H.Y., Liu, S.H.: Bilinear Bäcklund transformation, breather- and travelling-wave solutions for a (2+1)-dimensional extended Kadomtsev-Petviashvili II equation in fluid mechanics. Mod. Phys. Lett. B 35, 2150315 (2021)

    Google Scholar 

  82. Shen, Y., Tian, B., Zhao, X., Shan, W.R., Jiang, Y.: Bilinear form, bilinear auto-Bäcklund transformation, breather and lump solutions for a (3+1)-dimensional generalised Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid or a lattice. Pramana-J. Phys. 95, 137 (2021)

    Google Scholar 

  83. Ma, Y.X., Tian, B., Qu, Q.X., Yang, D.Y., Chen, Y.Q.: Painlevé analysis, Bäcklund transformations and traveling-wave solutions for a (\(3+1\))-dimensional generalized Kadomtsev-Petviashvili equation in a fluid. Int. J. Mod. Phys. B 35, 2150108 (2021)

    MATH  Google Scholar 

  84. Shen, Y., Tian, B.: Bilinear auto-Bäcklund transformations and soliton solutions of a (\(3+1\))-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. 122, 107301 (2021)

    MATH  Google Scholar 

  85. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Comment on “Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (\(2+1\))-dimensional dispersive long-wave system”. Chaos Solitons Fract. 151, 111222 (2021)

  86. Gao, X.Y., Guo, Y.J., Shan, W.R.: Symbolic computation on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for water waves. Chaos Solitons Fract. 150, 111066 (2021)

    MathSciNet  MATH  Google Scholar 

  87. Gao, X.Y., Guo, Y.J., Shan, W.R.: Similarity reductions for a (\(3+1\))-dimensional generalized Kadomtsev-Petviashvili equation in nonlinear optics, fluid mechanics and plasma physics. Appl. Comput. Math. 20, 421 (2021)

    MathSciNet  Google Scholar 

  88. Gao, X.T., Tian, B.: Water-wave studies on a (\(2+1\))-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

    MathSciNet  MATH  Google Scholar 

  89. Gao, X.Y., Guo, Y.J., Shan, W.R.: Scaling transformation, hetero-Bäcklund transformation and similarity reduction on a (\(2+1\))-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system for water waves. Rom. Rep. Phys. 73, 111 (2021)

    Google Scholar 

  90. Clarkson, P., Kruskal, M.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201 (1989)

    MathSciNet  MATH  Google Scholar 

  91. Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Acad, San Diego (1997)

    MATH  Google Scholar 

  92. Wei, G.M., Lu, Y.L., Xie, Y.Q., Zheng, W.X.: Lie symmetry analysis and conservation law of variable-coefficient Davey-Stewartson equation. Comput. Math. Appl. 75, 3420 (2018)

    MathSciNet  MATH  Google Scholar 

  93. Guan, S.N., Wei, G.M., Li, Q.: Lie symmetry analysis, optimal system and conservation law of a generalized (2+1)-dimensional Hirota-Satsuma-Ito equation. Mod. Phys. Lett. B 35, 2150515 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant No. 11871116 and the Fundamental Research Funds for the Central Universities of China under Grant No. 2019XD-A11. XYG also thanks the National Scholarship for Doctoral Students of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Yi Gao, Yong-Jiang Guo or Wen-Rui Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XY., Guo, YJ. & Shan, WR. Auto-Bäcklund Transformation, Similarity Reductions and Solitons of an Extended (\(2+1\))-Dimensional Coupled Burgers System in Fluid Mechanics. Qual. Theory Dyn. Syst. 21, 60 (2022). https://doi.org/10.1007/s12346-022-00574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00574-1

Keywords

Mathematics Subject Classification

Navigation