Skip to main content

Advertisement

Log in

Spinocerebellar Ataxia Type 1: One-Year Longitudinal Study to Identify Clinical and MRI Measures of Disease Progression in Patients and Presymptomatic Carriers

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxias type 1 (SCA1) is an autosomal dominant disease usually manifesting in adulthood. We performed a prospective 1-year longitudinal study in 14 presymptomatic mutation carriers (preSCA1), 11 ataxic patients, and 21 healthy controls. SCA1 patients had a median disease duration of 6 years (range 2–16) and SARA score of 7 points (range 3.5–20). PreSCA1 had an estimated time before disease onset of 9.7 years (range 4–30), and no signs of ataxia. At baseline, SCA1 patients significantly differed from controls in SARA score (Scale for Assessment and Rating of Ataxia), cognitive tests, and structural MRI measures. Significant volume loss was found in cerebellum, brainstem, basal ganglia, and cortical thinning in frontal, temporal, and occipital regions. PreSCA1 did not differ from controls. At 1-year follow-up, SCA1 patients showed significant increase in SARA score, and decreased volume of cerebellum (− 0.6%), pons (− 5.5%), superior cerebellar peduncles (− 10.7%), and midbrain (− 3.0%). Signs of disease progression were also observed in preSCA1 subjects, with increased SARA score and reduced total cerebellar volume. Our exploratory study suggests that clinical scores and MRI measures provide valuable data to monitor and quantify the earliest changes associated with the preclinical and the symptomatic phases of SCA1 disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this article will be made available by the authors, upon specific request.

References

  1. Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4:221–6. https://doi.org/10.1038/ng0793-221.

    Article  CAS  PubMed  Google Scholar 

  2. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Primers. 2019;5:24. https://doi.org/10.1038/s41572-019-0074-3.

    Article  PubMed  Google Scholar 

  3. Jacobi H, Reetz K, du Montcel ST, et al. Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurol. 2013;12:650–8. https://doi.org/10.1016/S1474-4422(13)70104-2.

    Article  PubMed  Google Scholar 

  4. Jacobi H, Tenzenas du Montcel S, Romanzetti S, et al. Conversion of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 to manifest ataxia (RISCA): a longitudinal cohort study. Lancet Neurol. 2020;19:738–47. https://doi.org/10.1016/S1474-4422(20)30235-0.

    Article  CAS  PubMed  Google Scholar 

  5. Maas RPPWM, van Gaalen J, Klockgether T, et al. The preclinical stage of spinocerebellar ataxias. Neurology. 2015;85:96–103. https://doi.org/10.1038/s41572-019-0074-3.

    Article  PubMed  Google Scholar 

  6. Tezenas du Montcel S, Durr A, Rakowicz M, et al. Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. J Med Genet. 2014;51:479–86. https://doi.org/10.1136/jmedgenet-2013-102200.

    Article  PubMed  Google Scholar 

  7. Jacobi H, Bauer P, Giunti P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3 and 6: a 2-year follow-up study. Neurology. 2011;77:1035–41. https://doi.org/10.1212/WNL.0b013e31822e7ca0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ashizawa T, Figueroa KP, Perlman SL, et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis. 2013;13:8–177. https://doi.org/10.1186/1750-1172-8-177.

    Article  Google Scholar 

  9. Jacobi H, Tezenas du Montcel S, Bauer P, et al. Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurol. 2015;14:1101–8. https://doi.org/10.1016/S1474-4422(15)00202-1.

    Article  PubMed  Google Scholar 

  10. Ginestroni A, Della Nave R, Tessa C, et al. Brain structural damage in spinocerebellar ataxia type 1: a VBM study. J Neurol. 2008;255:1153–8. https://doi.org/10.1007/s00415-008-0860-4.

    Article  PubMed  Google Scholar 

  11. Guerrini L, Lolli F, Ginestroni A, et al. Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain. 2004;127:1785–95. https://doi.org/10.1093/brain/awh201.

    Article  CAS  PubMed  Google Scholar 

  12. Schulz JB, Borkert J, Wolf S, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010;49:158–68. https://doi.org/10.1016/j.neuroimage.2009.07.027.

    Article  PubMed  Google Scholar 

  13. Goel G, Pal PK, Ravishankar S, et al. Gray matter volume deficits in spinocerebellar ataxia: An optimized voxel based morphometric study. Parkinsonism Relat Disord. 2011;17:521–7. https://doi.org/10.1016/j.parkreldis.2011.04.008.

    Article  PubMed  Google Scholar 

  14. Reetz K, Costa AS, Mirzazade S, et al. Genotype specific patterns of atrophy progression is more sensitive than clinical decline in SCA1, SCA3 and SCA6. Brain. 2013;136:905–17. https://doi.org/10.1093/brain/aws369.

    Article  PubMed  Google Scholar 

  15. Adanyeguh IM, Perlbarg V, Henry P-G, et al. Autosomal dominant cerebellar ataxias: Imaging biomarkers with high effect sizes. Neuroimage Clin. 2018;19:858–67. https://doi.org/10.1016/j.nicl.2018.06.011.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martins Junior CR, Martinez ARM, Vasconcelos IF, et al. Structural signature in SCA1: clinical correlates, determinants and natural history. J Neurol. 2018;265:2949–59. https://doi.org/10.1007/s00415-018-9087-1.

    Article  PubMed  Google Scholar 

  17. Deelchand DK, Joers JM, Ravishankar A, et al. Sensitivity of Volumetric Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy to Progression of Spinocerebellar Ataxia Type 1. Mov Disord Clin Pract. 2019;6:549–58. https://doi.org/10.1002/mdc3.12804.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Koscik TR, Sloat L, van der Plas E, et al. Brainstem and striatal volume changes are detectable in under 1 year and predict motor decline in spinocerebellar ataxia type 1. Brain Commun. 2020;2(2):fcaa184. https://doi.org/10.1093/braincomms/fcaa184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Solodkin A, Peri E, Chen EE, et al. Loss of Intrinsic Organization of Cerebellar Networks in Spinocerebellar Ataxia Type 1: Correlates with Disease Severity and Duration. Cerebellum. 2011;10:218–32. https://doi.org/10.1007/s12311-010-0214-5.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yoo YJ, Oh J. Identification of early neurodegenerative change in presymptomatic spinocerebellar ataxia type 1: A diffusion tensor imaging study. Parkinsonism Relat Disord. 2017;36:109–10. https://doi.org/10.1016/j.parkreldis.2016.12.031.

    Article  PubMed  Google Scholar 

  21. Diallo A, Jacobi H, Tezenas du Montcel S, Klockgether T. Natural history of most common spinocerebellar ataxia: a systematic review and meta-analysis. J Neurol. 2020. Online ahead of print. https://doi.org/10.1007/s00415-020-09815-2.

  22. Schmitz-Hübsch T, Tezenas du Montcel S, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  Google Scholar 

  23. Sequeiros J, Seneca S, Martindale J. Consensus and controversies in best practices for molecular genetic testing of spinocerebellar ataxias. Eur J Hum Genet. 2010;18:1188–95. https://doi.org/10.1038/ejhg.2010.10.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jacobi H, Rakowicz M, Rola R, et al. Inventory of Non-Ataxia Signs (INAS): Validation of a new clinical assessment instrument. Cerebellum. 2013;12:418–28. https://doi.org/10.1007/s12311-012-0421-3.

    Article  CAS  PubMed  Google Scholar 

  25. Fancellu R, Paridi D, Tomasello C, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260:3134–43. https://doi.org/10.1007/s00415-013-7138-1.

    Article  PubMed  Google Scholar 

  26. Sheridan LK, Fitzgerald HE, Adams KM, et al. Normative Symbol Digit Modalities Test performance in a community-based sample. Arch Clin Neuropsychol. 2006;21:23–8. https://doi.org/10.1016/j.acn.2005.07.003.

    Article  PubMed  Google Scholar 

  27. Teichmann M, Dupoux E, Kouider S, et al. The role of the striatum in rule application: the model of Huntington’s disease at early stage. Brain. 2005;128:1155–67. https://doi.org/10.1016/j.cortex.2008.12.005.

    Article  PubMed  Google Scholar 

  28. Romero JE, Coupé P, Giraud R, et al. CERES: A new cerebellum lobule segmentation method. Neuroimage. 2017;147:916–24.

    Article  Google Scholar 

  29. Manjón JV, Coupé P. volBrain: An Online MRI Brain Volumetry System. Front Neuroinform. 2016;10:30. Published 2016 Jul 27. https://doi.org/10.3389/fninf.2016.00030.

  30. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci. 2000;11050–11055. https://doi.org/10.1073/pnas.200033797.

  31. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3-D intersubject reg- istration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr. 1994;18(2):192–205.

    Article  CAS  Google Scholar 

  32. Fischl B, Salat DH, Busa E, et al. Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron. 2002;33:341–55.

    Article  CAS  Google Scholar 

  33. Iglesias JE, Van Leemput K, Bhatt P, et al. Bayesian segmentation of brainstem structures in MRI. Neuroimage. 2015;113:184–95.

    Article  Google Scholar 

  34. Black MH, Watanabe RM. A Principal Components-Based Clustering Method to Identify Variants Associated with Complex Traits. Hum Hered. 2011;71:50–8.

    Article  Google Scholar 

  35. Breiman L, Friedman J, Olshen R, et al. Classification and regression trees. Belmont: Wadsworth; 1984.

    Google Scholar 

  36. Therneau T, Atkinson B. Rpart: Recursive Partitioning and Regression Trees. R package version 4.1–13. 2018.

  37. Rezende TJR, de Paiva JLR, Martinez ARM, Lopes-Cendes I, Pedroso JL, Barsottini OGP, Cendes F, França MC Jr. Structural signature of SCA3: From presymptomatic to late disease stages. Ann Neurol. 2018;84:401-408. https://doi.org/10.1002/ana.25297.

  38. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11:352–65. https://doi.org/10.1007/s12311-011-0260-7.

    Article  PubMed  Google Scholar 

  39. Guell X, Schmahmann J. Cerebellar Functional Anatomy: a Didactic Summary Based on Human fMRI Evidence. Cerebellum. 2020;19:1–5. https://doi.org/10.1007/s12311-019-01083-9.

    Article  PubMed  Google Scholar 

  40. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79. https://doi.org/10.1093/brain/121.4.561.

    Article  PubMed  Google Scholar 

  41. Klinke I, Minnerop M, Schmitz-Hübsch T, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010;3:433–42. https://doi.org/10.1007/s12311-010-0183-8.

    Article  Google Scholar 

  42. Moriarty A, Cook A, Hunt H, et al. A longitudinal investigation into cognition and disease progression in spinocerebellar ataxia types 1,2, 3, 6, and 7. Orphanet J Rare Dis. 2016;11:82. https://doi.org/10.1186/s13023-016-0447-6.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Long JD, Langbehn DR, Tabrizi SJ, et al. Validation of a prognostic index for Huntington’s disease. Mov Disord. 2017;32:256–63. https://doi.org/10.1002/mds.26838.

    Article  PubMed  Google Scholar 

  44. Benedict RH, DeLuca J, Phillips G, et al. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult Scler. 2017;23:721–33. https://doi.org/10.1177/1352458517690821.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Silva PHR, Spedo CT, Barreira AA, Leoni RF. Symbol Digit Modalities Test adaptation for Magnetic Resonance Imaging environment: A systematic review and meta-analysis. Mult Scler Relat Disord. 2018;20:136–43. https://doi.org/10.1016/j.msard.2018.01.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all participants and their families for taking part in our study. The study was supported by the Italian Ministry of Health (Grant RF-2011-02347420 to CM).

Several authors (LN; FT; CM) of this publication are members of the European Reference Network for Rare Neurological Diseases, project ID no. 739510.

Author information

Authors and Affiliations

Authors

Contributions

A. Nigri, L, Sarro, C. Mariotti: study design, conception, execution, writing of the draft, and review manuscript. A. Mongelli, A. Castaldo, L. Nanetti, C. Pinardi, S.a Ferraro, E. Visani, M. Grisoli, L. Canafoglia, MG. Bruzzone, F. Taroni: conception, execution, writing of the draft. L. Porcu: statistical analyses, writing of the draft, and review manuscript.

Corresponding author

Correspondence to Caterina Mariotti.

Ethics declarations

Ethical Compliance Statement

We confirm that the obtained an institutional review board for this work and we have read the Journal’s position on issues involved in ethical publication and affirm that this work is consistent with those guidelines.

Conflict of Interest

CM reports personal fees from Roche and grant from Italian Ministry of Health; AN; LS; AM;AC; LP; CP; MG; SF; LC; EV; MGB; LN; and FT declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigri, A., Sarro, L., Mongelli, A. et al. Spinocerebellar Ataxia Type 1: One-Year Longitudinal Study to Identify Clinical and MRI Measures of Disease Progression in Patients and Presymptomatic Carriers. Cerebellum 21, 133–144 (2022). https://doi.org/10.1007/s12311-021-01285-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01285-0

Keywords

Navigation