Skip to main content
Log in

Both 50 and 30 Hz continuous theta burst transcranial magnetic stimulation depresses the cerebellum

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is implicated in the pathophysiology of numerous movement disorders, which makes it an attractive target for noninvasive neurostimulation. Continuous theta burst stimulation (cTBS) can induce long lasting plastic changes in human brain; however, the efficacy of different simulation protocols has not been investigated at the cerebellum. Here, we compare a traditional 50-Hz and a modified 30-Hz cTBS protocols at modulating cerebellar activity in healthy subjects. Seventeen healthy adults participated in two testing sessions where they received either 50-Hz (cTBS50) or 30-Hz (cTBS30) cerebellar cTBS. Cerebellar brain inhibition (CBI), a measure of cerebello-thalamocortical pathway strength, and motor evoked potentials (MEP) were measured in the dominant first dorsal interosseous muscle before and after (up to ~ 40 min) cerebellar cTBS. Both cTBS protocols induced cerebellar depression, indicated by significant reductions in CBI (P < 0.001). No differences were found between protocols (cTBS50 and cTBS30) at any time point (P = 0.983). MEP amplitudes were not significantly different following either cTBS protocol (P = 0.130). The findings show cerebellar excitability to be equally depressed by 50-Hz and 30-Hz cTBS in heathy adults and support future work to explore the efficacy of different cerebellar cTBS protocols in movement disorder patients where cerebellar depression could provide therapeutic benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chung SW, Hill AT, Rogasch NC, Hoy KE, Fitzgerald PB. Use of theta-burst stimulation in changing excitability of motor cortex: a systematic review and meta-analysis. Elsevier Ltd 2016;1–22.

  2. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45:201–6.

    Article  CAS  Google Scholar 

  3. Suppa A, Huang YZ, Funke K, Ridding MC, Cheeran B, Di Lazzaro V, et al. Ten years of theta burst stimulation in humans: established knowledge, unknowns and prospects. Elsevier Inc 2016;1–13.

  4. Wischnewski M, Schutter DJLG. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimulation. Elsevier Inc 2015; 8:685–92.

  5. Nyffeler T, Wurtz P, Lüscher H-R, Hess CW, Senn W, Pflugshaupt T, et al. Repetitive TMS over the human oculomotor cortex: comparison of 1-Hz and theta burst stimulation. Neurosci Lett. 2006;409:57–60.

    Article  CAS  PubMed  Google Scholar 

  6. Nyffeler T, Cazzoli D, Wurtz P, Lüthi M, von Wartburg R, Chaves S, et al. Neglect-like visual exploration behaviour after theta burst transcranial magnetic stimulation of the right posterior parietal cortex. Eur J Neurosci. 2008;27:1809–13.

    Article  PubMed  Google Scholar 

  7. Wu SW, Shahana N, Huddleston DA, Gilbert DL. Effects of 30Hz theta burst transcranial magnetic stimulation on the primary motor cortex. Journal of Neuroscience Methods Elsevier B.V 2012; 208:161–4.

  8. Goldsworthy MR, Pitcher JB, Ridding MC. A comparison of two different continuous theta burst stimulation paradigms applied to the human primary motor cortex. Clin Neurophysiol. 2012;123:2256–63.

  9. Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimulation Elsevier Inc. 2010;3:161–9.

    Article  CAS  Google Scholar 

  10. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2nd ed. 2011; 11:457–87.

  11. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136:696–709.

    Article  PubMed  Google Scholar 

  12. Bostan AC, Dum RP, Strick PL. Cerebellar networks with the cerebral cortex and basal ganglia. Trends in Cognitive Sciences Elsevier Ltd. 2013;17:241–54.

    Article  Google Scholar 

  13. Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol. 2008;119:2559–69.

    Article  PubMed  Google Scholar 

  14. Celnik P. Understanding and modulating motor learning with cerebellar stimulation. Cerebellum. 2014;14:171–4.

    Article  Google Scholar 

  15. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann. Neurol. Wiley subscription services, Inc.. A Wiley Company; 1995; 37:703–13.

  16. Lam CK, Staines WR, Tokuno CD, Bent LR. The medium latency muscle response to a vestibular perturbation is increased after depression of the cerebellar vermis. Brain Behav. 2017;7:e00782–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koch G, Brusa L, Carrillo F, Gerfo Lo E, Torriero S, Oliveri M, et al. Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease. Neurology. 2009;73:113–9.

    Article  CAS  PubMed  Google Scholar 

  18. Koch G, Porcacchia P, Ponzo V, Carrillo F, Cáceres-Redondo MT, Brusa L, et al. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients. Brain Stimulation Elsevier Ltd. 2014;7:564–72.

    Article  Google Scholar 

  19. Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimulation Elsevier Ltd. 2014;7:643–9.

    Article  Google Scholar 

  20. Fernandez L, Major BP, Teo W-P, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): a systematic review. Neurosci Biobehav Rev. 2018;86:176–206.

    Article  PubMed  Google Scholar 

  21. Hess G, Aizenman CD, Donoghue JP. Conditions for the induction of long-term potentiation in layer II/III horizontal connections of the rat motor cortex. J Neurophysiol. 1996;75:1765–78.

    Article  CAS  PubMed  Google Scholar 

  22. Huang Y-Z, Rothwell JC, Chen R-S, Lu C-S, Chuang W-L. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clin Neurophysiol. 2011;122:1011–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Huang Y-Z, Chen R-S, Rothwell JC, Wen H-Y. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007;118:1028–32.

    Article  CAS  PubMed  Google Scholar 

  24. Aizenman CD, Manis PB, Linden DJ. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron. 1998;21:827–35.

    Article  CAS  PubMed  Google Scholar 

  25. Molnar GF, Sailer A, Gunraj CA, Lang AE, Lozano AM, Chen R. Thalamic deep brain stimulation activates the cerebellothalamocortical pathway. Neurology. 2004;63:907–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ni Z, Pinto AD, Lang AE, Chen R. Involvement of the cerebellothalamocortical pathway in Parkinson disease. Ann Neurol. 2010;68:816–24.

    Article  PubMed  Google Scholar 

  27. Carrillo F, Palomar FJ, Conde V, Diaz-Corrales FJ, Porcacchia P, Fernández-del-Olmo M, et al. Study of cerebello-thalamocortical pathway by transcranial magnetic stimulation in Parkinson’s disease. Brain Stimulation Elsevier Ltd. 2013;6:582–9.

    Article  Google Scholar 

  28. Brighina F, Romano M, Giglia G, Saia V, Puma A, Giglia F, et al. Effects of cerebellar TMS on motor cortex of patients with focal dystonia: a preliminary report. Exp Brain Res. 2008;192:651–6.

    Article  PubMed  Google Scholar 

  29. Fernandez L, Major BP, Teo W-P, Byrne LK, Enticott PG. The impact of stimulation intensity and coil type on reliability and tolerability of cerebellar brain inhibition (CBI) via dual-coil TMS. Cerebellum. 2018;78:272–10.

  30. Oliveri M, Koch G, Torriero S, Caltagirone C. Increased facilitation of the primary motor cortex following 1Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett. 2005;376:188–93.

    Article  CAS  PubMed  Google Scholar 

  31. Li Voti P, Conte A, Rocchi L, Bologna M, Khan N, Leodori G, et al. Cerebellar continuous theta-burst stimulation affects motor learning of voluntary arm movements in humans. Eur J Neurosci. 2013;39:124–31.

    Article  PubMed  Google Scholar 

  32. Bologna M, Di Biasio F, Conte A, Iezzi E, Modugno N, Berardelli A. Effects of cerebellar continuous theta burst stimulation on resting tremor in Parkinson’s disease. Parkinsonism and Related Disorders Elsevier Ltd. 2015;21:1061–6.

    Article  Google Scholar 

  33. Helmich RC, Janssen MJR, Oyen WJG, Bloem BR, Toni I. Pallidal dysfunction drives a cerebellothalamic circuit into Parkinson tremor. Ann Neurol. 2011;69:269–81.

    Article  PubMed  Google Scholar 

  34. Lefaivre SC, Brown MJN, Almeida QJ. Cerebellar involvement in Parkinson’s disease resting tremor. Cerebellum Ataxias. 2016;3:13.

  35. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol Lond. 2010;588:2291–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pell GS, Roth Y, Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol Elsevier Ltd. 2011;93:59–98.

    Article  Google Scholar 

  37. Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex. 2013;23:1593–605.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Oury Monchi for use of his laboratory space, and Rachel Sondergaard for assistance with data collection.

Funding

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada Grant No. 2017-04126 (ZHTK), Eyes High University of Calgary fellowship, Parkinson Alberta fellowship, and Parkinson’s Foundation fellowship Grant No. PF-FBS-1776 (NDJS), Branch Out Neurological Foundation (ADC), as well as the Hotchkiss Brain Institute N3 Network.

Author information

Authors and Affiliations

Authors

Contributions

N.D.J.S, L. G, and Z.H.T.K conceived and designed the research; N.D.J.S, A.D.C, and L. G performed the experiments; N.D.J.S and A.D.C analyzed data and prepared figures; N.D.J.S drafted manuscript; N.D.J.S, A.D.C, L. G, and Z.H.T.K edited and revised manuscript; N.D.J.S, A.D.C, L. G, and Z.H.T.K approved final version of manuscript.

Corresponding author

Correspondence to Zelma H. T. Kiss.

Ethics declarations

The experimental procedures were approved by the University of Calgary Research Ethics Board and complied with the Declaration of Helsinki.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 1112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strzalkowski, N.D.J., Chau, A.D., Gan, L.S. et al. Both 50 and 30 Hz continuous theta burst transcranial magnetic stimulation depresses the cerebellum. Cerebellum 18, 157–165 (2019). https://doi.org/10.1007/s12311-018-0971-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0971-0

Keywords

Navigation