Skip to main content
Log in

Understanding and Modulating Motor Learning with Cerebellar Stimulation

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Non-invasive brain stimulation techniques are a powerful approach to investigate the physiology and function of the central nervous system. Recent years have seen numerous investigations delivering transcranial magnetic stimulation (TMS) and or transcranial direct current stimulation (tDCS) to the cerebellum to determine its role in motor, cognitive and emotional behaviours. Early studies have shown that it is possible to assess cerebellar-motor cortex (CB-M1) connectivity using a paired-pulse TMS paradigm called cerebellar inhibition (CBI), and indirectly infer the state of cerebellar excitability. Thus, it has been shown that CBI changes proportionally to the magnitude of locomotor learning and in association with reaching adaption tasks. In addition, CBI has been used to demonstrate at a physiological level the effects of applying TMS or tDCS to modulate, up or down, the excitability of cerebellar-M1 connectivity. These studies became the fundamental substrate to newer investigations showing that we can affect motor, cognitive and emotional behaviour when targeting the cerebellum with TMS or tDCS in the context of performance. Furthermore, newer investigations are starting to report the effects of cerebellar non-invasive stimulation to treat symptoms associated with neurological conditions such as stroke and dystonia. Altogether, given the scarcity of current effective therapeutic options, non-invasive cerebellar stimulation can potentially become a game changer for the management of conditions that affect the cerebellum. This brief manuscript presents some of the current evidence demonstrating the effects of cerebellar stimulation to modulate motor behaviour and its use to assess physiological processes underlying motor learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden CD. Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. J Physiol Lond. 1991;441:57–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37:703–13.

    Article  CAS  PubMed  Google Scholar 

  3. Pinto AD, Chen R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res. 2001;140:505–10.

    Article  CAS  PubMed  Google Scholar 

  4. Werhahn KJ, Taylor J, Ridding M, Meyer BU, Rothwell JC. Effect of transcranial magnetic stimulation over the cerebellum on the excitability of human motor cortex. Electroencephalogr Clin Neurophysiol. 1996;101:58–66.

    Article  CAS  PubMed  Google Scholar 

  5. Jayaram G, Galea JM, Bastian AJ, Celnik PA. Human locomotor adaptive ability is proportional to depression of cerebellar excitability. Cereb Cortex. 2011;21(8):1901–9.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Morton SM, Bastian AJ. Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci. 2006;26(36):9107–16.

    Article  CAS  PubMed  Google Scholar 

  7. Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007;130(pt 7):1861–72.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Yanagihara D, Kondo I. Nitric oxide plays a key role in adaptive control of locomotion in cat. Proc Natl Acad Sci U S A. 1996;93:13292–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Schlerf JE, Galea JM, Bastian AJ, Celnik P. Dynamic modulation of cerebellar excitability for abrupt, but not gradual, visuomotor adaptation. J Neurosci. 2012;32(34):11610–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ito M. Cerebellar control of the vestibulo-ocular reflex—around the flocculus hypothesis. Ann Rev Neurosci. 1982;5:275–97.

    Article  CAS  PubMed  Google Scholar 

  11. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol Lond. 2000;527(Pt 3):633–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  13. Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48(5):1398–403.

    Article  CAS  PubMed  Google Scholar 

  14. Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006;117(12):2584–96.

    Article  PubMed  Google Scholar 

  15. Nitsche MA, Paulus W. Transcranial direct current stimulation-update 2011. Restor Neurol Neurosci. 2011;29(6):463–92.

    PubMed  Google Scholar 

  16. Fritsch B, Reis J, Martinowich K, Schambra HM, Ji Y, Cohen LG, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learing. Neuron. 2010;66(2):198–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Rampersad SM, Janssen AM, Lucka F, Aydin U, Lanfer B, Lew S, et al. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):441–52.

    Article  PubMed  Google Scholar 

  19. Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3(3):161–9.

    Article  CAS  PubMed  Google Scholar 

  20. Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Cerebellum. 2014;13(1):121–38.

    Article  CAS  PubMed  Google Scholar 

  21. Galea JM, Vazquez A, Pasricha N, de Xivry JJ O, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21:1761–70.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):1590–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950–7.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Herzfeld DJ, Pastor D, Haith AM, Rossetti Y, Shadmehr R, O′Shea J. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories. NeuroImage. 2014;98:147–58.

    Article  PubMed  Google Scholar 

  25. Hardwick RM, Celnik PA. Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiol Aging. 2014;S0197–4580(14):00288–7.

    Google Scholar 

  26. Block HJ, Celnik P. Can cerebellar transcranial direct current stimulation become a valuable neurorehabilitation intervention? Expert Rev Neurother. 2012;12:1275–7.

    Article  CAS  PubMed  Google Scholar 

  27. Hoffland BS, Bologna M, Kassavetis P, Teo JT, Rothwell JC, Yeo CH, et al. Cerebellar theta burst stimulation impairs eyeblink classical conditioning. J Physiol. 2012;590(Pt 4):887–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Bonnì S, Ponzo V, Caltagirone C, Koch G. Cerebellar theta burst stimulation in stroke patients with ataxia. Funct Neurol. 2014;7:1–5.

    Google Scholar 

  29. Koch G, Porcacchia P, Ponzo V, Carrillo F, Cáceres-Redondo MT, Brusa L, et al. Effects of Two Weeks of Cerebellar Theta Burst Stimulation in Cervical Dystonia Patients. Brain Stimul. 2014 May 9. pii: S1935-861X (14) 00172–7.

Download references

Acknowledgments

Pablo Celnik receives funding from the NIH grants 1R01HD053793 and R01HD073147. Dr. Amy Bastian helped design and draw Fig 1.

Conflict of Interest

The author has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Celnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celnik, P. Understanding and Modulating Motor Learning with Cerebellar Stimulation. Cerebellum 14, 171–174 (2015). https://doi.org/10.1007/s12311-014-0607-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-014-0607-y

Keywords

Navigation