Skip to main content

Advertisement

Log in

Hereditary Spastic Paraplegia: Clinical and Genetic Hallmarks

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Hereditary spastic paraplegia comprises a wide and heterogeneous group of inherited neurodegenerative and neurodevelopmental disorders resulting from primary retrograde dysfunction of the long descending fibers of the corticospinal tract. Although spastic paraparesis and urinary dysfunction represent the most common clinical presentation, a complex group of different neurological and systemic compromise has been recognized recently and a growing number of new genetic subtypes were described in the last decade. Clinical characterization of individual and familial history represents the main step during diagnostic workup; however, frequently, few and unspecific data allows a low rate of definite diagnosis based solely in clinical and neuroimaging basis. Likewise, a wide group of neurological acquired and inherited disorders should be included in the differential diagnosis and properly excluded after a complete laboratorial, neuroimaging, and genetic evaluation. The aim of this review article is to provide an extensive overview regarding the main clinical and genetic features of the classical and recently described subtypes of hereditary spastic paraplegia (HSP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klebe S, Stevanin G, Depienne C. Clinical and genetic heterogeneity in hereditary spastic paraplegias: from SPG1 to SPG72 and still counting. Rev Neurol (Paris). 2015;171:505–30.

    Article  CAS  Google Scholar 

  2. Finsterer J, Löscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G. Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci. 2012;318:1–18.

    Article  PubMed  Google Scholar 

  3. Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A. Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol. 2014;261:518–39.

    Article  CAS  PubMed  Google Scholar 

  4. Blackstone C, O'Kane CJ, Reid E. Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci. 2010;12:31–42.

    Article  CAS  Google Scholar 

  5. Salinas S, Proukakis C, Crosby A, Warner TT. Hereditary spastic paraplegia: clinical features and pathogenetic mechanisms. Lancet Neurol. 2008;7:1127–38.

    Article  CAS  PubMed  Google Scholar 

  6. Ruano L, Melo C, Silva MC, Coutinho P. The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology. 2014;42:174–83.

    Article  PubMed  Google Scholar 

  7. Coutinho P, Barros J, Zemmouri R, Guimarães J, Alves C, Chorão R, et al. Clinical heterogeneity of autosomal recessive spastic paraplegias: analysis of 106 patients in 46 families. Arch Neurol. 1999;56:943–9.

    Article  CAS  PubMed  Google Scholar 

  8. Fink JK. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mecanisms. Acta Neuropathol. 2013;126:307–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Sihavy JL, Heiberg AD, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014;343:506–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harding AE. Hereditary ‘pure’ spastic paraplegia: a clinical and genetic study of 22 families. J Neurol Neurosurg Psychiatry. 1981;72:43–6.

    Google Scholar 

  11. Harding AE. Classification of hereditary ataxias and paraplegias. Lancet. 1983;1:1151–5.

    Article  CAS  PubMed  Google Scholar 

  12. Reid E. Pure spastic paraplegia. J Med Genet. 1997;34:499–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fink JK. Advances in the hereditary spastic paraplegias. Exp Neurol. 2003;184:S106–10.

    Article  CAS  PubMed  Google Scholar 

  14. Meirkord H, Nurnberg P, Mainz A, Marczinek K, Mrug M, Hampe J. Complicated’ autosomal dominant familial spastic paraplegia is genetically distinct from pure ‘forms. Arch Neurol. 1997;54:379–84.

    Article  Google Scholar 

  15. McMonagle P, Webb S, Hutchinson M. The prevalence of “pure” autosomal dominant hereditary spastic paraparesis in the island of Ireland. J Neurol Neurosurg Psychiatry. 2002;72:43–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM. Prevalence of hereditary ataxia and spastic paraplegia in Southeast Norway: a population based study. Brain. 2009;132:1577–88.

    Article  PubMed  Google Scholar 

  17. Boukhris A, Stevanin G, Feki I, Denora P, Elleuch N, Miladi MI, et al. Tunisian hereditary spastic paraplegias: clinical variability supported by genetic heterogeneity. Clin Genet. 2009;75:527–36.

    Article  CAS  PubMed  Google Scholar 

  18. Sedel F, Fontaine B, Saudubray JM, Lyon-Caen O. Hereditary spastic paraparesis in adults associated with inborn errors of metabolism. J Inherit Metab Dis. 2007;30:855–64.

    Article  CAS  PubMed  Google Scholar 

  19. Pedroso JL, Souza PVS, Pinto WBVR, Braga-Neto P, Albuquerque MVC, Saraiva-Pereira ML, et al. SCA1 patients may present as hereditary spastic paraplegia and must be included in spastic-ataxias group. Parkinsonism Relat Disord. 2015;21:1243–6.

    Article  PubMed  Google Scholar 

  20. Souza PVS, Pinto WBVR, Oliveira ASB. c9orf72-related disorders: expanding the clinical and genetic spectrum of neurodegenerative diseases. Arq Neuropsiquiatr. 2015;73:246–56.

    Article  PubMed  Google Scholar 

  21. Souza PVS, Pinto WBVR, Chieia MAT, Oliveira ASB. Clinical and genetic basis of familial amyotrophic lateral sclerosis. Arq Neuropsiquiatr. 2015;73:1026–37.

    Article  PubMed  Google Scholar 

  22. Depienne C, Stevanin G, Brice A, Durr A. Hereditary spastic paraplegias: an update. Curr Opin Neurol. 2007;20:674–80.

    Article  CAS  PubMed  Google Scholar 

  23. De Bot ST, Willemsen MAAP, Vermeer S, Kremer HPH, van de Warrenburg BPC. Reviewing the genetic causes of spastic-ataxias. Neurology. 2012;79:1507–14.

    Article  PubMed  Google Scholar 

  24. De Bot ST, van de Warrenburg BP, Kremer HP, Willemsen MA. Child neurology: hereditary spastic paraplegia in children. Neurology. 2010;75:e75–9.

    Article  PubMed  Google Scholar 

  25. Harding AE. Hereditary spastic paraplegias. Semin Neurol. 1993;13:333–6.

    Article  CAS  PubMed  Google Scholar 

  26. Jouet M, Rosenthal A, Armstrong G, MacFarlane J, Stevenson R, Paterson J, et al. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nat Genet. 1994;7:402–7.

    Article  CAS  PubMed  Google Scholar 

  27. Schrander-Stumpel C, Meyer H, Merckx D, Jones M, Israel J, Sommer A, et al. The spectrum of ‘complicated spastic paraplegia, MASA syndrome and X-linked hydrocephalus’: contribution of DNA linkage analysis in genetic counseling of individual families. Genet Couns. 1994;5:1–10.

    CAS  PubMed  Google Scholar 

  28. Naidu S, Dlouhy SR, Geraghty MT, Hodes ME. A male child with the rumpshaker mutation, X-linked spastic paraplegia/Pelizaeus-Merzbacher disease and lysinuria. J Inherit Metab Dis. 1997;20:811–6.

    Article  CAS  PubMed  Google Scholar 

  29. Orlacchio A, Montieri P, Babalini C, Gaudiello F, Bernardi G, Kawarai T. Late-onset hereditary spastic paraplegia with thin corpus callosum caused by a new SPG3A mutation. (Letter) J Neurol. 2011;258:1361–3.

    Article  PubMed  Google Scholar 

  30. Solowska JM, Baas PW. Hereditary spastic paraplegia SPG4: what is known and not known about the disease. Brain. 2015;138:2471–84.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Arnoldi A, Crimella C, Tenderini E, Martinuzzi A, D’Angelo MG, Musumeci O, et al. Clinical phenotype variability in patients with hereditary spastic paraplegia type 5 associated with CYP7B1 mutations. Clin Genet. 2012;81:150–7.

    Article  CAS  PubMed  Google Scholar 

  32. Reed JA, Wilkinson PA, Patel H, Simpson MA, Chatonnet A, Robay D, et al. A novel NIPA1 mutation associated with a pure form of autosomal dominant hereditary spastic paraplegia. Neurogenetics. 2005;6:79–84.

    Article  CAS  PubMed  Google Scholar 

  33. Rainier S, Chai JH, Tokarz D, Nicholls RD, Fink JK. NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am J Hum Genet. 2003;73:967–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Warnecke T, Duning T, Schwan A, Lohmann H, Epplen JT, Young P. A novel form of autosomal recessive hereditary spastic paraplegia caused by a new SPG7 mutation. Neurology. 2007;69:368–75.

    Article  CAS  PubMed  Google Scholar 

  35. Arnoldi A, Tonelli A, Crippa F, Villani G, Pacelli C, Sironi M, et al. A clinical, genetic, and biochemical characterization of SPG7 mutations in a large cohort of patients with hereditary spastic paraplegia. Hum Mutat. 2008;29:522–31.

    Article  CAS  PubMed  Google Scholar 

  36. Pfeffer G, Pyle A, Griffin H, Miller J, Wilson V, Turnbull L, et al. SPG7 mutations are a common cause of undiagnosed ataxia. Neurology. 2015;84:1174–6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pfeffer G, Gorman GS, Griffin H, Kurzawa-Akanbi M, Blakely EL, Wilson I, et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain. 2014;137:1323–36.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marcotulli C, Leonardi L, Tessa A, De Negris AM, Cornia R, Pierallini A, et al. Early-onset optic neuropathy as initial clinical presentation in SPG7. J Neurol. 2014;261:1820–1.

    Article  PubMed  Google Scholar 

  39. De Bot ST, Vermeer S, Buijsman W, Heister A, Voorendt M, Verrips A, et al. Pure adult-onset spastic paraplegia caused by a novel mutation in the KIAA0196 (SPG8) gene. J Neurol. 2013;260:1765–9.

    Article  CAS  PubMed  Google Scholar 

  40. Coutelier M, Goizet C, Durr A, Habarou F, Morais S, Dionne-Laporte A, et al. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain. 2015;138:2191–205.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu YT, Laura M, Hersheson J, Horga A, Jaunmuktane Z, Brandner S, et al. Extended phenotypic spectrum of KIF5A mutations: from spastic paraplegia to axonal neuropathy. Neurology. 2014;83:612–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blair MA, Ma S, Hedera P. Mutation in KIF5A can also cause adult-onset hereditary spastic paraplegia. Neurogenetics. 2006;7:47–50.

    Article  CAS  PubMed  Google Scholar 

  43. Stevanin G, Santorelli FM, Azzedine H, Coutinho P, Chomilier J, Denora PS, et al. Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet. 2007;39:366–72.

    Article  CAS  PubMed  Google Scholar 

  44. Perez-Branguli F, Mishra HK, Prots I, Havlicek S, Kohl Z, Saul D, et al. Dysfunction of spatacsin leads to axonal pathology in SPG11-linked hereditary spastic paraplegia. Hum Mol Genet. 2014;23:4859–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Orlacchio A, Kawarai T, Rogaeva E, Song YQ, Paterson AD, Bernardi G, et al. Clinical and genetic study of a large Italian family linked to SPG12 locus. Neurology. 2002;59:1395–401.

    Article  CAS  PubMed  Google Scholar 

  46. Hansen JJ, Durr A, Cournu-Rebeix I, Georgopoulos C, Ang D, Nielsen MN, et al. Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet. 2002;70:1328–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vazza G, Zortea M, Boaretto F, Micaglio GF, Sartori V, Mostacciulo ML. A new locus for autosomal recessive spastic paraplegia associated with mental retardation and distal motor neuropathy, SPG14, maps to chromosome 3q27-q28. Am J Hum Genet. 2000;67:504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goizet C, Boukhris A, Maltete D, Guyant-Marechal L, Truchetto J, Mundwiller E, et al. SPG15 is the second most common cause of hereditary spastic paraplegia with thin corpus callosum. Neurology. 2009;73:1111–9.

    Article  CAS  PubMed  Google Scholar 

  49. Boukhris A, Feki I, Denis E, Miladi MI, Brice A, Mhiri C, et al. Spastic paraplegia 15: linkage and clinical description of three Tunisian families. Mov Disord. 2008;23:429–33.

    Article  PubMed  Google Scholar 

  50. Pensato V, Castellotti B, Gellera C, Pareyson D, Ciano C, Nanetti L, et al. Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain. 2014;137:1907–20.

    Article  PubMed  Google Scholar 

  51. Steinmuller R, Lantigua-Cruz A, Garcia-Garcia R, Kostrzewa M, Steinberger D, Muller U. Evidence of a third locus in X-linked recessive spastic paraplegia. Hum Genet. 1997;100:287–9.

    Article  CAS  PubMed  Google Scholar 

  52. Van de Warrenburg BPC, Scheffer H, van Eijk JJJ, Versteeg MHA, Kremer H, Zwarts MJ, et al. BSCL2 mutations in two Dutch families with overlapping silver syndrome-distal hereditary motor neuropathy. Neuromuscul Disord. 2006;16:122–5.

    Article  PubMed  Google Scholar 

  53. Brusse E, Majoor-Krakauer D, de Graaf BM, Visser GH, Swagemakers S, Boon AJW, et al. A novel 16p locus associated with BSCL2 hereditary motor neuronopathy: a genetic modifier? Neurogenetics. 2009;10:289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ito D, Suzuki N. Seipinopathy: a novel endoplasmic reticulum stress-associated disease. Brain. 2009;132:8–15.

    Article  PubMed  Google Scholar 

  55. Al-Yahyaee S, Al-Gazali LL, De Jonghe P, Al-Barwany H, Al-Kindi M, De Vriendt E, et al. A novel locus for hereditary spastic paraplegia with thin corpus callosum and epilepsy. Neurology. 2006;66:1230–4.

    Article  CAS  PubMed  Google Scholar 

  56. Yildirim Y, Orhan EK, Iseri SAL, Serdaroglu-Oflazer P, Kara B, Solakoglu S, et al. A frameshift mutation of ERLIN2 in recessive intellectual disability, motor dysfunction and multiple joint contractures. Hum Mol Genet. 2011;20:1886–92.

    Article  CAS  PubMed  Google Scholar 

  57. Valente EM, Brancati F, Caputo V, Bertini E, Patrono C, Costanti D, et al. Novel locus for autosomal dominant pure hereditary spastic paraplegia (SPG19) maps to chromosome 9q33-q34. Ann Neurol. 2002;51:681–5.

    Article  CAS  PubMed  Google Scholar 

  58. Manzini MC, Rajab A, Maynard TM, Mochida GH, Tan WH, Nasir R, et al. Developmental and degenerative features in a complicated spastic paraplegia. Ann Neurol. 2010;67:516–25.

    Article  CAS  PubMed  Google Scholar 

  59. Simpson MA, Cross H, Proukakis C, Pryde A, Hershberger R, Chatonnet A, et al. Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am J Hum Genet. 2003;73:1147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bohan TP, Azizi P. Allan-Herndon-Dudley syndrome: should the locus for this hereditary spastic paraplegia be designated SPG22? (Letter) Arch Neurol. 2004;61:1470–1.

    Article  PubMed  Google Scholar 

  61. Fink JK. Reply to Bohan and Azizi. (letter). Arch Neurol. 2004;61:1471.

    Article  Google Scholar 

  62. Lison M, Kornbrut B, Feinstein A, Hiss Y, Boichis H, Goodman RM. Progressive spastic paraparesis, vitiligo, premature graying, and distinct facial appearance: a new genetic syndrome in 3 sibs. Am J Med Genet. 1981;9:351–7.

    Article  CAS  PubMed  Google Scholar 

  63. Bamforth JS. Vitiligo-spasticity syndrome: new case. Clin Dysmorphol. 2003;12:137–9.

    Article  CAS  PubMed  Google Scholar 

  64. Hodgkinson CA, Bohlega S, Abu-Amero SN, Cupler E, Kambouris M, Meyer BF, et al. A novel form of autosomal recessive pure hereditary spastic paraplegia maps to chromosome 13q14. Neurology. 2002;59:1905–9.

    Article  CAS  PubMed  Google Scholar 

  65. Zortea M, Vettori A, Trevisan CP, Bellini S, Vazza G, Armani M, et al. Genetic mapping of a susceptibility locus for disc herniation and spastic paraplegia on 6q23.3-q24.1. J Med Genet. 2002;39:387–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Boukhris A, Schule R, Loureiro JL, Lourenco CM, Mundwiller E, Gonzalez MA, et al. Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am J Hum Genet. 2013;93:118–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meijer IA, Cossette P, Roussel J, Benard M, Toupin S, Rouleau GA. A novel locus for pure recessive hereditary spastic paraplegia maps to 10q22.1-10q24.1. Ann Neurol. 2004;56:579–82.

    Article  CAS  PubMed  Google Scholar 

  68. Tesson C, Nawara M, Salih MAM, Rossignol R, Zaki MS, Al Balwi M, et al. Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet. 2012;91:1051–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Orlacchio A, Kawarai T, Gaudiello F, St George-Hyslop PH, Floris R, Bernardi G. New locus for hereditary spastic paraplegia maps to chromosome 1p31.1-1p21.1. Ann Neurol. 2005;58:423–9.

    Article  CAS  PubMed  Google Scholar 

  70. Erlich Y, Edvardson S, Hodges E, Zenvirt S, Thekkat P, Shaag A, et al. Exome sequencing and disease-network analysis of a single family implicate a mutation in KIF1A in hereditary spastic paraparesis. Genome Res. 2011;21:658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hewamadduma C, McDermott C, Kirby J, Grierson A, Penayi M, Dalton A, et al. New pedigrees and novel mutation expand the phenotype of REEP1-associated hereditary spastic paraplegia (HSP). Neurogenetics. 2009;10:105–10.

    Article  CAS  PubMed  Google Scholar 

  72. Mannan AU, Krawen P, Sauter SM, Boehm J, Chronowska A, Paulus W, et al. ZFYVE27 (SPG33), a novel spastin-binding protein, is mutated in hereditary spastic paraplegia. Am J Hum Genet. 2006;79:351–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Macedo-Souza LI, Kok F, Santos S, Licinio L, Lezirovitz K, Nascimento RMP, et al. Reevaluation of a large family defines a new locus for X-linked recessive pure spastic paraplegia (SPG34) on chromosome Xq25. Neurogenetics. 2008;9:225–6.

    Article  PubMed  Google Scholar 

  74. Dick KJ, Eckhardt M, Paisan-Ruiz C, Alsehhi AA, Proukakis C, Sibtain NA, et al. Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat. 2010;31:E1251–60.

    Article  CAS  PubMed  Google Scholar 

  75. Kruer MC, Paisan-Ruiz C, Boddaert N, Yoon MY, Hama H, Gregory A, et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol. 2010;68:611–8.

    Article  CAS  PubMed  Google Scholar 

  76. Pierson TM, Simeonov DR, Sincan M, Adams DA, Markello T, Golas G, et al. Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration. Eur J Hum Genet. 2012;20:476–9.

    Article  CAS  PubMed  Google Scholar 

  77. Schule R, Bonin M, Durr A, Forlani S, Sperfeld AD, Klimpe S, et al. Autosomal dominant spastic paraplegia with peripheral neuropathy maps to chr12q23-24. Neurology. 2009;72:1893–8.

    Article  CAS  PubMed  Google Scholar 

  78. Hanein S, Durr A, Ribai P, Forlani S, Leutenegger AL, Nelson I, et al. A novel locus for autosomal dominant ‘uncomplicated’ hereditary spastic paraplegia maps to chromosome 8p21.1-p13.3. Hum Genet. 2007;122:261–73.

    Article  CAS  PubMed  Google Scholar 

  79. Orlacchio A, Patrono C, Gaudiello F, Rocchi C, Moschella V, Floris R, et al. Silver syndrome variant of hereditary spastic paraplegia: a locus to 4p and allelism with SPG4. Neurology. 2008;70:1959–66.

    Article  CAS  PubMed  Google Scholar 

  80. Rainier S, Bui M, Mark E, Thomas D, Tokarz D, Ming L, et al. Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet. 2008;82:780–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Synofzik M, Gonzalez MA, Lourenco CM, Coutelier M, Haack TB, Rebelo A, et al. PNPLA6 mutations cause Boucher-Neuhauser and Gordon Holmes syndromes as part of a broad neurodegenerative spectrum. Brain. 2014;137:69–77.

    Article  PubMed  Google Scholar 

  82. Subramony SH, Nguyen TV, Langford L, Lin X, Parent AD, Zhang J. Identification of a new form of autosomal dominant spastic paraplegia. (letter). Clin Genet. 2009;76:113–6.

    Article  CAS  PubMed  Google Scholar 

  83. Zhao G, Hu Z, Shen L, Jiang H, Ren Z, Liu X, et al. A novel candidate locus on chromosome 11p14.1-p11.2 for autosomal dominant hereditary spastic paraplegia. Chin Med J. 2008;121:430–4.

    CAS  PubMed  Google Scholar 

  84. Lin P, Li J, Liu Q, Mao F, Li J, Qiu R, et al. A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42). Am J Hum Genet. 2008;83:752–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meilleur KG, Traore M, Sangare M, Britton A, Landoure G, Coulibaly S, et al. Hereditary spastic paraplegia and amyotrophy associated with a novel locus on chromosome 19. Neurogenetics. 2010;11:313–8.

    Article  CAS  PubMed  Google Scholar 

  86. Landoure G, Zhu PP, Lourenco CM, Johnson JO, Toro C, Bricceno KV, et al. Hereditary spastic paraplegia type 43 (SPG43) is caused by mutation in C19orf12. Hum Mutat. 2013;34:1357–60.

    Article  CAS  PubMed  Google Scholar 

  87. Orthmann-Murphy JL, Salsano E, Abrams CK, Bizzi A, Uziel G, Freidin MM, et al. Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain. 2009;132:426–38.

    Article  PubMed  Google Scholar 

  88. Dursun U, Koroglu C, Orhan EK, Ugur SA, Tolun A. Autosomal recessive spastic paraplegia (SPG45) with mental retardation maps to 10q24.3-q25.1. Neurogenetics. 2009;10:325–31.

    Article  PubMed  Google Scholar 

  89. Martin E, Schule R, Smets K, Rastetter A, Boukhris A, Loureiro JL, et al. Loss of function of glucocerebrosidase GBA2 is responsible for motor neuron defects in hereditary spastic paraplegia. Am J Hum Genet. 2013;92:238–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Votsi C, Zamba-Papanicolaou E, Middleton LT, Pantzaris M, Christodoulou K. A novel GBA2 gene missense mutation in spastic ataxia. Ann Hum Genet. 2014;78:13–22.

    Article  CAS  PubMed  Google Scholar 

  91. Abou Jamra R, Philippe O, Raas-Rothschild A, Eck SH, Graf E, Buchert R, et al. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. Am J Hum Genet. 2011;88:788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tuysuz B, Bilguvar K, Kocer N, Yalcinkaya C, Caglayan O, Gul E, et al. Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: expansion of the facial and neuroimaging features. Am J Med Genet. 2014;164A:1677–85.

    Article  PubMed  CAS  Google Scholar 

  93. Slabicki M, Theis M, Krastev DB, Samsonov S, Mundwiller E, Junqueira M, et al. A genome-scale DNA repair RNAi screen identifies SPG48 as a novel gene associated with hereditary spastic paraplegia. PLoS Biol. 2010;8:e1000408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Oz-Levi D, Ben-Zeev B, Ruzzo EK, Hitomi Y, Gelman A, Pelak K, et al. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet. 2012;91:1065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Verkerk AJMH, Schot R, Dumee B, Schellekens K, Swagemakers S, Bertoli-Avella AM, et al. Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet. 2009;85:40–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moreno-de-Luca A, Helmers SL, Mao H, Burns TG, Melton AMA, Schmidt KR, et al. Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal recessive cerebral palsy syndrome with microcephaly and intellectual disability. J Med Genet. 2011;48:141–4.

    Article  CAS  PubMed  Google Scholar 

  97. Zivony-Elboum Y, Westbroek W, Kfir N, Savitzki D, Shoval Y, Bloom A, et al. A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J Med Genet. 2012;49:462–72.

    Article  CAS  PubMed  Google Scholar 

  98. Schuurs-Hoeijmakers JHM, Geraghy MT, Kamsteeg EJ, Ben-Salem S, de Bot ST, Nijhof B, et al. Mutations in DDHD2, encoding an intracellular phospholipase a(1), cause a recessive form of complex hereditary spastic paraplegia. Am J Hum Genet. 2012;91:1073–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shimazaki H, Takiyama Y, Ishiura H, Sakai C, Matsushima Y, Hatakeyama H, et al. A homozygous mutation of C12orf65 causes spastic paraplegia with optic atrophy and neuropathy (SPG55). J Med Genet. 2012;49:777–84.

    Article  CAS  PubMed  Google Scholar 

  100. Spiegel R, Mandel H, Saada A, Lerer I, Burger A, Shaag A, et al. Delineation of C12orf65-related phenotypes: a genotype–phenotype relationship. Eur J Hum Genet. 2014;22:1019–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Beetz C, Johnson A, Schuh AL, Thakur S, Varga RE, Fothergill T, et al. Inhibition of TFG function causes hereditary axon degeneration by impairing endoplasmic reticulum structure. Proc Natl Acad Sci. 2013;110:5091–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Akizu N, Cantagrel V, Schroth J, Cai N, Vaux K, McCloskey D, et al. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorders. Cell. 2013;154:505–17.

    Article  CAS  PubMed  Google Scholar 

  103. Esteves T, Durr A, Mundwiller E, Loureiro JL, Boutry M, Gonzalez MA, et al. Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia. Am J Hum Genet. 2014;94:268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Carrasco P, Jacas J, Sahun I, Muley H, Ramirez S, Puisac B, et al. Carnitine palmitoyltransferase 1C deficiency causes motor impairment and hypoactivity. Behav Brain Res. 2013;256:291–7.

    Article  CAS  PubMed  Google Scholar 

  105. Lossos A, Stümpfig C, Stevanin G, Gaussen M, Zimmerman BE, Mundwiller E, et al. Fe/S protein assembly gene IBA57 mutation causes hereditary spastic paraplegia. Neurology. 2015;84:659–67.

    Article  CAS  PubMed  Google Scholar 

  106. Hadano S, Benn SC, Kakuta S, Otomo A, Sudo K, Kunita R, et al. Mice deficient in the Rab5 guanine nucleotide exchange factor ALS2/alsin exhibit age-dependent neurological deficits and altered endosome trafficking. Hum Mol Genet. 2006;15:233–50.

    Article  CAS  PubMed  Google Scholar 

  107. Eymard-Pierre E, Lesca G, Dollet S, Santorelli FM, di Capua M, Bertini E, et al. Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. Am J Hum Genet. 2002;71:518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Macedo-Souza LI, Kok F, Santos S, Amorim SC, Starling A, Nishimura A, et al. Spastic paraplegia, optic atrophy, and neuropathy is linked to chromosome 11q13. Ann Neurol. 2005;57:730–7.

    Article  CAS  PubMed  Google Scholar 

  109. Macedo-Souza LI, Kok F, Santos S, Licinio L, Lezirovitz K, Cavacana N, et al. Spastic paraplegia, optic atrophy, and neuropathy: new observations, locus refinement, and exclusion of candidate genes. Ann Hum Genet. 2009;73:382–7.

    Article  PubMed  Google Scholar 

  110. McHale DP, Mitchell S, Bundey S, Moynihan L, Campbell DA, Woods CG, et al. A gene for autosomal recessive symmetrical spastic cerebral palsy maps to chromosome 2q24-25. Am J Hum Genet. 1999;64:526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xiang YY, Wang S, Liu M, Hirota JA, Li J, Ju W, et al. A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med. 2007;13:862–7.

    Article  CAS  PubMed  Google Scholar 

  112. Wells CR, Jankovic J. Familial spastic paraparesis and deafness. A new X-linked neurodegenerative disorders. Arch Neurol. 1986;43:943–6.

    Article  CAS  PubMed  Google Scholar 

  113. Oates EC, Rossor AM, Hafezparast M, Gonzalez M, Speziani F, MacArthur DG, et al. Mutations in BICD2 cause dominant congenital spinal muscular atrophy and hereditary spastic paraplegia. Am J Hum Genet. 2013;92:965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bouhouche A, Benomar A, Bouslam N, Chkili T, Yahyaoui M. Mutation in the epsilon subunit of the cytosolic chaperonin-containing t-complex peptide-1 (Cct5) gene causes autosomal recessive mutilating sensory neuropathy with spastic paraplegia. J Med Genet. 2006;43:441–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ilgaz Aydinlar E, Rolfs A, Serteser M, Parman Y. Mutation in FAM134B causing hereditary sensory neuropathy with spasticity in a Turkish family. Muscle Nerve. 2014;49:774–5.

    Article  PubMed  Google Scholar 

  116. Halevy A, Lerer I, Cohen R, Kornreich L, Shuper A, Gamliel M, et al. Novel EXOSC3 mutation causes complicated hereditary spastic paraplegia. J Neurol. 2014;261:2165–9.

    Article  CAS  PubMed  Google Scholar 

  117. Shimazaki H, Honda J, Naoi T, Namekawa M, Nakano I, Yazaki M, et al. Autosomal-recessive complicated spastic paraplegia with a novel lysosomal trafficking regulator gene mutation. J Neurol Neurosurg Psychiatry. 2014;85:1024–8.

    Article  PubMed  Google Scholar 

  118. Maier A, Klopocki E, Horn D, Tzschach A, Holm T, Meyer R, et al. De novo partial deletion in GRID2 presenting with complicated spastic paraplegia. Muscle Nerve. 2014;49:289–92.

    Article  CAS  PubMed  Google Scholar 

  119. Rice GI, del Toro DY, Jenkinson EM, Forte GMA, Anderson BH, Ariaudo G, et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet. 2014;46:503–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Crow YJ, Zaki MS, Abdel-Hamid MS, Abdel-Salam G, Boespflug-Tanguy O, et al. Mutations in ADAR1, IFIH1, and RNASEH2B presenting as spastic paraplegia. Neuropediatrics. 2014;45:386–93.

    Article  CAS  PubMed  Google Scholar 

  121. Bayrakli F, Poyrazoglu HG, Yuksel S, Yakicier C, Erguner B, Sagiroglu MS, et al. Hereditary spastic paraplegia with recessive trait caused by mutation in KLC4 gene. J Hum Genet. 2015;60:763–8.

    Article  CAS  PubMed  Google Scholar 

  122. Li M, Ho PW, Pang SY, Tse ZH, Kung MH, Sham PC, et al. PMCA4 (ATP2B4) mutation in familial spastic paraplegia. PLoS One. 2014;9:e104790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Ho PW, Pang SY, Li M, Tse ZH, Kung MH, Sham PC, et al. PMCA4 (ATP2B4) mutation in familial spastic paraplegia causes delay in intracellular calcium extrusion. Brain Behav. 2015;5:e00321.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kancheva D, Chamova T, Guergueltcheva V, Mitev V, Azmanov DN, Kalaydjieva L, et al. Mosaic dominant TUBB4A mutation in an inbred family with complicated hereditary spastic paraplegia. Mov Disord. 2015;30:854–8.

    Article  CAS  PubMed  Google Scholar 

  125. Yang Y, Liu W, Fang Z, Shi J, Che F, He C, et al. A newly identified missense mutation in FARS2 causes autosomal recessive spastic paraplegia. Hum Mutat. 2016;37:165–9.

    Article  CAS  PubMed  Google Scholar 

  126. Sambuughin N, Goldfarb LG, Sivtseva TM, Davydova TK, Valdimirtsev VA, Osakovskiy VL, et al. Adult-onset autosomal dominant spastic paraplegia linked to a GTPase-effector domain mutation of dynamin 2. BMC Neurol. 2015;15:223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Tiranti V, Corona P, Greco M, Taanman JW, Carrara F, Lamantea E, et al. A novel frameshift mutation of the mtDNA COIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-like syndrome. Hum Mol Genet. 2000;9:2733–42.

    Article  CAS  PubMed  Google Scholar 

  128. Corona P, Lamantea E, Greco M, Carrara F, Agostino A, Guidetti D, et al. Novel heteroplasmic mtDNA mutation in a family with heterogeneous clinical presentations. Ann Neurol. 2002;51:118–22.

    Article  CAS  PubMed  Google Scholar 

  129. Clarençon F, Touzé E, Leroy-Willig A, Turmel H, Naggara O, Pavy S, et al. Spastic paraparesis as a manifestation of Leber’s disease. J Neurol. 2006;253:525–6.

    Article  PubMed  Google Scholar 

  130. Verny C, Guegen N, Desquiret V, Chevrollier A, Prundean A, Dubas F, et al. Hereditary spastic paraplegia-like disorder due to a mitochondrial ATP6 gene point mutation. Mitochondrion. 2011;11:70–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wladimir Bocca Vieira de Rezende Pinto.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

No funding sources were used for this manuscript.

Human and Animal Studies

This article does not contain any studies with human participants or animals performed by any of the authors.

Financial Disclosure and Funding Support

We have nothing to disclose.

Ethical Statement

This study was approved by our Ethics Institution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, P.V.S., de Rezende Pinto, W.B.V., de Rezende Batistella, G.N. et al. Hereditary Spastic Paraplegia: Clinical and Genetic Hallmarks. Cerebellum 16, 525–551 (2017). https://doi.org/10.1007/s12311-016-0803-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0803-z

Keywords

Navigation