Skip to main content

Advertisement

Log in

Effect of Intraventricular Hemorrhage on Cerebellar Growth in Preterm Neonates

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The aim of this study is to evaluate cerebellar growth of preterm infants with intraventricular hemorrhage. Vermis height (VH) and transverse cerebellar diameter (TCD) were measured by cranial ultrasound in 18 preterm infants (26–30 weeks) with intraventricular hemorrhage (IVH) at first 3 days of life and at term equivalent age (TEA). IVH was diagnosed by ultrasonography and scaled in accordance with the definitions by Papile et al. Measurements were compared with 18 preterm (26–30 weeks) infants without IVH. Both VH and TCD of preterm infants with IVH were significantly lower than those of preterm ones without IVH at TEA (p < 0.001). No significant difference was found for head circumference (p = 0.158) and weight (p = 0.092). In subgroup analysis, preterm infants with grades 3–4 IVH had significantly lower TCD (p = 0.008) and head circumference (p = 0.033) than the ones with grades 1–2 IVH. However, VH (p = 0.102) and weight (p = 0.480) did not show any difference between these subgroups. IVH may have a significant impact on cerebellar growth on preterm infants at TEA, specially those with a severe IVH. TCD is affected more than VH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams-Chapman I. Insults to the developing brain and impact on neurodevelopmental outcome. J Commun Disord. 2009;42:256–62.

    Article  PubMed  Google Scholar 

  2. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–24.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Volpe JJ. Intracranial hemorrhage germinal matrix-intraventricular of the premature infant. In: Volpe JJ, editor. Neurology of the newborn. 4th ed. Philadelphia: Saunders; 2001. p. 428–93.

    Google Scholar 

  4. Chang CH, Chang FM, Yu CH, Ko HC, Chen HY. Assesment of fetal cerebellar volume using three-dimensional ultrasound. Ultrasound Med Biol. 2000;26:981–8.

    Article  CAS  PubMed  Google Scholar 

  5. Tam EWY, Ferriero DM, Xu D, Berman JI, Vigneron DB, Barkovich AJ, et al. Cerebellar development in the preterm neonate: effect of supratentorial brain injury. Pediatr Res. 2009;66:102–6.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tam EWY, Miller SP, Studholme C, Chau V, Glidden D, Poskitt KJ, et al. Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr. 2011;158:366–71.

    Article  PubMed  Google Scholar 

  7. Graça AM, Geraldo AF, Cardoso K, Cowan FM. Preterm cerebellum at term age: ultrasound measurements are not different from infants born at term. Pediatr Res. 2013;74(6):698–704.

    Article  PubMed  Google Scholar 

  8. Ovali F. Intrauterin growth curves for Turkish infants born between 25 and 42 weeks of gestation. J Trop Pediatr. 2003;49:381–3.

    Article  PubMed  Google Scholar 

  9. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1.500 gm. J Pediatr. 1978;92:529–34.

    Article  CAS  PubMed  Google Scholar 

  10. Imamoglu EY, Gursoy T, Ovali F, Hayran M, Karatekin G. Nomograms of cerebellar vermis height and transverse cerebellar diameter in appropriate-for-gestational-age neonates. Early Hum Dev. 2013;89:919–23.

    Article  PubMed  Google Scholar 

  11. Brennan P, Silman A. Statistical methods for assessing observer variability in clinical measures. BMJ. 1992;304:1491–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Srinivasan L, Allsop J, Counsell SJ, Boardman JP, Edwards AD, Rutherford M. Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions. Am J Neuroradiol. 2006;27:573–9.

    CAS  PubMed  Google Scholar 

  13. Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115:688–95.

    Article  PubMed  Google Scholar 

  14. Sancak S, Gursoy T, Imamoglu EY, Karatekin G, Ovali F. Effect of prematurity on cerebellar growth. J Child Neurol. 2015.

  15. Allin MPG, Salaria S, Nosarti C, Wyatt J, Rifkin L, Murray RM. Vermis and lateral lobes of the cerebellum in adolescents born very preterm. Neuroreport. 2005;16:1821–4.

    Article  PubMed  Google Scholar 

  16. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79. 31.

    Article  PubMed  Google Scholar 

  17. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67.

    Article  PubMed  Google Scholar 

  18. Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Mariën P. Cerebellar cognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.

    Article  PubMed  Google Scholar 

  19. Tavano A, Grasso R, Gagliardi C, Triulzi F, Bresolin N, Fabbro F, et al. Disorders of cognitive and affective development in cerebellar malformations. Brain. 2007;130:2646–60.

    Article  PubMed  Google Scholar 

  20. Limperopoulos C, Bassan H, Gauvreau K, Robertson Jr RL, Sullivan NR, Benson CB, et al. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics. 2007;120:584–93.

    Article  PubMed  Google Scholar 

  21. Shah DK, Anderson PJ, Carlin JB, Pavlovic M, Howard K, Thompson DK, et al. Reduction in cerebellar volumes in preterm infants: relationship to white matter injury and neurodevelopmen at 2 years of age. Pediatr Res. 2006;60:97–102.

    Article  PubMed  Google Scholar 

  22. Lind A, Parkkola R, Lehtonen L, Munck P, Maunu J, Lapinleimu H, et al. Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children. Pediatr Radiol. 2011;41:953–61.

    Article  PubMed  Google Scholar 

  23. Volpe JJ. Cerebellum and the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24:1085–104.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rakic P, Sidman RL. Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol. 1970;139:473–500.

    Article  CAS  PubMed  Google Scholar 

  25. Haldipur P, Bharti U, Alberti C, Sarkar C, Gulati G, Iyengar S, et al. Preterm delivery disrupts the developmental program of the cerebellum. PLoS One. 2011;6:e23449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL. Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development. 2004;131:5581–90.

    Article  CAS  PubMed  Google Scholar 

  27. Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Birnbacher R, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol. 2005;26:1659–67.

    PubMed  Google Scholar 

  28. Koeppen AH, Michael SC, Li D, Chen Z, Cusack MJ, Gibson WM, et al. The pathology of superficial siderosis of the central nervous system. Acta Neuropathol. 2008;116(4):371–82.

    Article  CAS  PubMed  Google Scholar 

  29. Soto-Ares G, Vinchon M, Delmaire C, Abecidan E, Dhellemes P, Pruvo JP. Cerebellar atrophy after severe traumatic head injury in children. Childs Nerv Syst. 2001;17:263–9.

    Article  CAS  PubMed  Google Scholar 

  30. Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011;42:1781–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tam EW. Potential mechanisms of cerebellar hypoplasia in prematurity. Neuroradiology. 2013;55(2):41–6.

    Article  PubMed  Google Scholar 

  32. Biran V, Verney C, Ferriero DM. Perinatal cerebellar injury in human and animal models. Neurol Res Int. 2012. doi:10.1155/2012/858929.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selim Sancak.

Ethics declarations

Written parental consent was obtained from the parents and local ethics committee approved the study protocol.

Funding

The research being reported in this publication was not supported by any sponsor.

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sancak, S., Gursoy, T., Karatekin, G. et al. Effect of Intraventricular Hemorrhage on Cerebellar Growth in Preterm Neonates. Cerebellum 16, 89–94 (2017). https://doi.org/10.1007/s12311-016-0766-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0766-0

Keywords

Navigation