Skip to main content
Log in

Longitudinal Changes in Cerebellar and Thalamic Spontaneous Neuronal Activity After Wide-Awake Surgery of Brain Tumors: a Resting-State fMRI Study

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Hypometabolism has been observed in the contralesional cerebellar hemisphere after various supratentorial cortical lesions. It is unknown whether the consequences of the dee- and deafferentation subsequent to wide-awake surgery for brain diffuse low-grade glioma can be assessed within remote and unresected subcortical structures such as the cerebellum or thalamus. To answer this question, we have conducted several regional analyses. More specifically, we have performed amplitude of low-frequency fluctuations (neuronal activity magnitude) and regional homogeneity (local temporal correlations) analyses on resting state functional magnetic resonance imaging (rs-fMRI) data and at different time points, before and after surgery. Our main results demonstrated that it is possible to evaluate subtle subcortical changes using these tools dedicated to the analysis of rs-fMRI data. The observed variations of spontaneous neuronal activity were particularly significant within the cerebellum which showed altered regional homogeneity and neuronal activity intensity in very different, specialized and non-overlapping subregions, in accordance to its neuro-anatomo-functional topography. These variations were moreover observed in the immediate postoperative period and recovered after 3 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duffau H. Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 2005;4(8):476–86.

    Article  PubMed  Google Scholar 

  2. Bonnetblanc F, Desmurget M, Duffau H. Low grade gliomas and cerebral plasticity: fundamental and clinical implications. Med Sci. 2006;22(4):389–94.

    Google Scholar 

  3. Desmurget M, Bonnetblanc F, Duffau H. Contrasting acute and slow-growing lesions: a new door to brain plasticity. Brain. 2007;130(4):898–914.

    Article  PubMed  Google Scholar 

  4. Sallard E, Duffau H, Bonnetblanc F. Ultra-fast recovery from right neglect after 'awake surgery' for slow-growing tumor invading the left parietal area. Neurocase. 2012;18(1):80–90.

    Article  PubMed  Google Scholar 

  5. Finger S .Lesion momentum and behaviour. In: Recovery from brain damage: research and theory. Plenum Press. 1978:135–64.

  6. Finger S, Stein D. Brain damage and recovery: research and clinical perspectives. Academic Press. 1982; 368.

  7. Stein DG, Finger S, Hart T. Brain damage and recovery: problems and perspectives. Behav Neural Biol. 1983;37(2):185–222.

    Article  CAS  PubMed  Google Scholar 

  8. Herbet G, Lafargue G, Bonnetblanc F, Moritz-Gassers S, Duffau H. Is the right frontal cortex really crucial in the mentalizing network? A longitudinal study in patients with a slow-growing lesion. Cortex. 2013;49(10):2711–27.

    Article  PubMed  Google Scholar 

  9. Charras P, Herbet G, Deverdun J, de Champfleur NM, Duffau H, Bartolomeo P, et al. Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study. Cortex. 2015;63:27–41.

    Article  PubMed  Google Scholar 

  10. Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Lopes M, et al. Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J Neurol Neurosurg Psychiatry. 2003;74(7):901–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carrera E, Tononi G. Diaschisis: past, present, future. Brain. 2014;137(9):2408–22.

    Article  PubMed  Google Scholar 

  12. Pantano P, Baron JC, Samson Y, Bousser MG, Derouesne C, Comar D. Crossed cerebellar diaschisis. Further studies. Brain. 1986;109(4):677–94.

    Article  PubMed  Google Scholar 

  13. Yamauchi H, Fukuyama H, Kimura J, Ishikawa M, Kikuchi H. Crossed cerebellar hypoperfusion indicates the degree of uncoupling between blood flow and metabolism in major cerebral arterial occlusion. Stroke. 1994;25(10):1945–51.

    Article  CAS  PubMed  Google Scholar 

  14. Meneghetti G, Vorstrup S, Mickey B, Lindewald H, Lassen NA. Crossed cerebellar diaschisis in ischemic stroke: a study of regional cerebral blood flow by 133Xe inhalation and single photon emission computerized tomography. J Cereb Blood Flow Metab. 1984;4(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  15. Chen S, Guan M, Lian HJ, Ma LJ, Shang JK, He S, et al. Crossed cerebellar diaschisis detected by arterial spin-labeled perfusion magnetic resonance imaging in subacute ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(9):2378–83.

    Article  PubMed  Google Scholar 

  16. Ayrignac X, Taïeb G, Castelnovo G, Renard D, Collombier L, Menjot de Champfleur N, et al. Cortical and cerebellar hypometabolism after bilateral antero-inferior cerebellar artery infarct. Neurology. 2012;78(1):69–70.

    Article  CAS  PubMed  Google Scholar 

  17. Otte A, Roelcke U, von Ammon K, Hausmann O, Maguire RP, Missimer J, et al. Crossed cerebellar diaschisis and brain tumor biochemistry studied with positron emission tomography, [18F]fluorodeoxyglucose and [11C]methionine. J Neurol Sci. 1998;156(1):73–7.

    Article  CAS  PubMed  Google Scholar 

  18. Kajimoto K, Oku N, Kimura Y, Kato H, Tanaka MR, Kanai Y, et al. Crossed cerebellar diaschisis: a positron emission tomography study with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Ann Nucl Med. 2007;21(2):109–13.

    Article  CAS  PubMed  Google Scholar 

  19. Snyder AZ, Raichle ME. A brief history of the resting state: the Washington University perspective. Neuroimage. 2012;62(2):902–10.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rosazza C, Minati L. Resting-state brain networks: literature review and clinical applications. Neurol Sci. 2011;32(5):773–85.

    Article  PubMed  Google Scholar 

  21. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol. 2013;34(10):1866–72.

    Article  CAS  PubMed  Google Scholar 

  22. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage. 2012;61(4):1213–25.

    Article  PubMed  Google Scholar 

  24. Margulies DS, Böttger J, Long X, Lv Y, Kelly C, Schäfer A, et al. Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. MAGMA. 2010;23(5-6):289–307.

    Article  PubMed  Google Scholar 

  25. Murphy K, Birn RM, Bandettini PA. Resting-state FMRI confounds and cleanup. Neuroimage. 2013;80(1):349–59.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004;22(1):394–400.

    Article  PubMed  Google Scholar 

  27. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29(2):83–91.

    Article  PubMed  Google Scholar 

  28. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, et al. The oscillating brain: complex and reliable. Neuroimage. 2010;49(2):1432–45.

    Article  PubMed  Google Scholar 

  29. Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, et al. An improved approach to detection of amplitude of low frequency fluctuation (ALFF) for resting-state MRI: fractional ALFF. J Neurosci Methods. 2008;172(1):137–41.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang CX, Fu KL, Liu HJ, Xing F and Zhang SY. Spontaneous brain activity in type 2 diabetics revealed by amplitude of low frequency fluctuations and its association with diabetic vascular disease: a resting-state fMRI study. PLoS ONE. 2014;9(10): doi: 10.1371/journal.pone.0108883.

  31. Wang L, Dai W, Su Y, Wang G, Tan Y, Jin Z, Zeng Y, Yu X, Chen W, Wang X and Si T. Amplitude of low-frequency oscillations in first-episode, treatment-naive patients with major depressive disorder: a resting-state functional MRI study. PloS ONE. 2012;7(10): doi: 10.1371/journal.pone.0048658.

  32. Y Kwak, SJ Peltier, NI Bohnen, ML Müller, P Dayalu and RD Seidler. L-DOPA changes spontaneous low-frequency BOLD signal oscillations in Parkinson’s disease: a resting state fMRI study. Front Syst Neurosci. 2014;6(52): doi: 10.3389/fnsys.2012.00052.

  33. Liu H, Liu Z, Liang M, Hao Y, Tan L, Kuang F, et al. Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport. 2006;17(1):19–22.

    Article  CAS  PubMed  Google Scholar 

  34. He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, et al. Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study. Neuroimage. 2007;35(2):488–500.

    Article  PubMed  Google Scholar 

  35. Cao Q, Zang Y, Sun L, Sui M, Long X, Zou Q, et al. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport. 2006;17(10):1033–6.

    Article  PubMed  Google Scholar 

  36. Niu C, Zhang M, Min Z, Rana N, Zhang Q, Liu X, Li M and Lin P. Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study. PLoS One. 2014;9(5): doi: 10.1371/journal.pone.0096850.

  37. Wu J, Qian Z, Tao L, Yin J, Ding S, Zhang Y, et al. Resting state fMRI feature-based cerebral glioma grading by support vector machine. Int J Comput Assist Radiol Surg. 2015;10(7):1167–74.

    Article  PubMed  Google Scholar 

  38. Boyer A, Deverdun J, Duffau H, Le Bars E, Menjot de Champfleur N and Bonnetblanc F. Crossed cerebellar diaschisis after awake brain surgery: can we measure pre/post operative changes on resting state fMRI data? IEEE, Conference proceeding. 2015.

  39. Q Zou, J Wang, H Gu, Y Zang Y Yang. Correlations between cerebral blood flow and amplitude of BOLD fluctuation in the Resting State, Proc. Intl.Soc.Mag.Reson.Med.18, 2010.

  40. Li Z, Zhu Y, Childress AR, Detre JA Wang Z. Relations between BOLD fMRI-derived resting brain activity and cerebral blood flow. PLoS ONE. 2012;7(9).

  41. Ashburner J. SPM: a history. Neuroimage. 2012;62(2):791–800.

    Article  PubMed  Google Scholar 

  42. XW Song, Z-Y Dong, XY Long, SF Li, XN Zuo, CZ Zhu, Y He, CG Yan YF Zang. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE. 2011;6(9): doi: 10.1371/journal.pone.0025031.

  43. Lowe MJ, Russell DP. Treatment of baseline drifts in fMRI time series analysis. J Comput Assist Tomogr. 1999;23(3):463–73.

    Article  CAS  PubMed  Google Scholar 

  44. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, et al. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol. 2001;22(7):1326–33.

    CAS  PubMed  Google Scholar 

  45. Diedrichsen J, Balster JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. Neuroimage. 2009;46(1):39–46.

    Article  PubMed  Google Scholar 

  46. Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage. 2011;54(3):1786–94.

    Article  CAS  PubMed  Google Scholar 

  47. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SN, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11(2):457–87.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ouchi Y, Okada H, Yoshikawa E, Nobezawa S, Futatsubashi M. Brain activation during maintenance of standing postures in humans. Brain. 1999;122(2):329–38.

    Article  PubMed  Google Scholar 

  49. Spencer RM, Verstynen T, Brett M, Ivry R. Cerebellar activation during discrete and not continuous timed movements: an fMRI study. Neuroimage. 2007;36(2):378–87.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum's role in movement and cognition. Cerebellum. 2014;13(1):151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wolf U, Rapoport MJ, Schweizer TA. Evaluating the affective component of the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2009;21(3):245–53.

    Article  PubMed  Google Scholar 

  52. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.

    Article  CAS  PubMed  Google Scholar 

  53. Leiner HC. Solving the mystery of the human cerebellum. Neuropsychol Rev. 2010;20(3):229–35.

    Article  PubMed  Google Scholar 

  54. Shakiba A. The role of the cerebellum in neurobiology of psychiatric disorders. Neurol Clin. 2014;32(4):1105–15.

    Article  PubMed  Google Scholar 

  55. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.

    Article  PubMed  Google Scholar 

  56. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schlerf JE, Verstynen TD, Ivry RB, Spencer RM. Evidence of a novel somatopic map in the human neocerebellum during complex actions. J Neurophysiol. 2010;103(6):3330–06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grodd W, Hülsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13(2):55–73.

    Article  CAS  PubMed  Google Scholar 

  59. Roostaei T, Nazeri A, Sahraian MA, Minagar A. The human cerebellum: a review of physiologic neuroanatomy. Neurol Clin. 2014;32(4):859–69.

    Article  PubMed  Google Scholar 

  60. Fine EJ, Ionita CC, Lohr L. The history of the development of the cerebellar examination. Semin Neurol. 2002;22(4):375–84.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bonnetblanc.

Additional information

Nicolas Menjot de Champfleur and François Bonnetblanc contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyer, A., Deverdun, J., Duffau, H. et al. Longitudinal Changes in Cerebellar and Thalamic Spontaneous Neuronal Activity After Wide-Awake Surgery of Brain Tumors: a Resting-State fMRI Study. Cerebellum 15, 451–465 (2016). https://doi.org/10.1007/s12311-015-0709-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0709-1

Keywords

Navigation