Skip to main content
Log in

Underlying interactive neural mechanism of motor learning governed by the cerebellum, the basal ganglia, and motor/sensory cortex: a review from theoretical perspective

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The pursuit of effective motion rehabilitation devices has been a prominent focus of research in recent decades. However, the efficacy of such devices relies heavily on their ability to induce motor learning. Thus, understanding the neuroscientific principles underlying motor learning is crucial. This paper highlights a significant number of studies investigating the roles of various brain regions such as the basal ganglia, cerebellum, and motor cortex in motor learning, either individually or in interactive processes. However, due to the theoretical nature of many proposed ideas, definitive conclusions about acceptable brain interactive mechanisms facilitating motor learning are challenging. Addressing the lack of a comprehensive review paper to scrutinize and compare these hypotheses, identify weaknesses, and offer new directions for researchers, this study provides a theoretical perspective review. Excluding works solely focused on neurophysiological connections or computational models, it categorizes selected papers into topics related to the contributions of basal ganglia, cerebellum, motor/sensory cortex, and super-learning mechanisms in motor learning. The analysis suggests that concepts emphasizing super-learning hypotheses and information transmission mechanisms offer valuable insights into the processes underlying motor learning, warranting greater attention for designing rehabilitation interventions. Nonetheless, further experimental evidence is necessary to validate these hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

My manuscript has no associated data.

References

  1. Papale AE, Hooks BM. Circuit changes in motor cortex during motor skill learning. Neuroscience. 2018;368:283-97.

    Article  CAS  PubMed  Google Scholar 

  2. Hwang EJ, Dahlen JE, Hu YY, Aguilar K, Yu B, Mukundan M, et al. Disengagement of motor cortex from movement control during long-term learning. Science advances. 2019;5(10):eaay0001.

  3. Makino H, Ren C, Liu H, Kim AN, Kondapaneni N, Liu X, et al. Transformation of cortex-wide emergent properties during motor learning. Neuron. 2017;94(4):880-90. e8.

  4. Leisman G, Braun-Benjamin O, Melillo R. Cognitive-motor interactions of the basal ganglia in development. Frontiers in systems neuroscience. 2014;8:16.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Granato G, Cartoni E, Da Rold F, Mattera A, Baldassarre G. A Computational Model of Representation Learning in the Brain Cortex, Integrating Unsupervised and Reinforcement Learning. arXiv preprint arXiv:210603688. 2021.

  6. Bédard P, Sanes JN. Basal ganglia-dependent processes in recalling learned visual-motor adaptations. Experimental brain research. 2011;209:385-93.

    Article  PubMed  Google Scholar 

  7. Zhang W, Guo L, Liu D. Concurrent interactions between prefrontal cortex and hippocampus during a spatial working memory task. Brain Structure and Function. 2022;227(5):1735-55.

    Article  PubMed  Google Scholar 

  8. Kitazawa S, Kimura T, Yin P-B. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature. 1998;392(6675):494-7.

    Article  CAS  PubMed  Google Scholar 

  9. Streng ML, Popa LS, Ebner TJ. Climbing fibers control Purkinje cell representations of behavior. Journal of Neuroscience. 2017;37(8):1997-2009.

    Article  CAS  PubMed  Google Scholar 

  10. Hull C. Prediction signals in the cerebellum: beyond supervised motor learning. elife. 2020;9:e54073.

  11. Herrojo Ruiz M, Maudrich T, Kalloch B, Sammler D, Kenville R, Villringer A, et al. Modulation of neural activity in frontopolar cortex drives reward-based motor learning. Scientific reports. 2021;11(1):20303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang JX, Kurth-Nelson Z, Kumaran D, Tirumala D, Soyer H, Leibo JZ, et al. Prefrontal cortex as a meta-reinforcement learning system. Nature neuroscience. 2018;21(6):860-8.

    Article  CAS  PubMed  Google Scholar 

  13. Ito M, Doya K. Multiple representations and algorithms for reinforcement learning in the cortico-basal ganglia circuit. Current opinion in neurobiology. 2011;21(3):368-73.

    Article  CAS  PubMed  Google Scholar 

  14. Gershman SJ, Moustafa AA, Ludvig EA. Time representation in reinforcement learning models of the basal ganglia. Frontiers in computational neuroscience. 2014;7:194.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rosahl SK, Knight RT. Role of prefrontal cortex in generation of the contingent negative variation. Cerebral Cortex. 1995;5(2):123-34.

    Article  CAS  PubMed  Google Scholar 

  16. Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nature Reviews Neuroscience. 2018;19(6):338-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Milardi D, Quartarone A, Bramanti A, Anastasi G, Bertino S, Basile GA, et al. The cortico-basal ganglia-cerebellar network: past, present and future perspectives. Frontiers in systems neuroscience. 2019;13:61.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Spampinato DA, Celnik PA, Rothwell JC. Cerebellar–motor cortex connectivity: one or two different networks? Journal of Neuroscience. 2020;40(21):4230-9.

    Article  CAS  PubMed  Google Scholar 

  19. Bukhari Q, Ruf SF, Guell X, Whitfield-Gabrieli S, Anteraper S. Interaction between cerebellum and cerebral cortex, evidence from dynamic causal modeling. The Cerebellum. 2022;21(2):225-33.

    Article  PubMed  Google Scholar 

  20. O'Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38(2):329-37.

    Article  CAS  PubMed  Google Scholar 

  21. Cacciola A, Milardi D, Livrea P, Flace P, Anastasi G, Quartarone A. The known and missing links between the cerebellum, basal ganglia, and cerebral cortex. The Cerebellum. 2017;16:753-5.

    Article  PubMed  Google Scholar 

  22. Mori F, Okada K-i, Nomura T, Kobayashi Y. The pedunculopontine tegmental nucleus as a motor and cognitive interface between the cerebellum and basal ganglia. Frontiers in neuroanatomy. 2016;10:109.

  23. Hintzen A, Pelzer EA, Tittgemeyer M. Thalamic interactions of cerebellum and basal ganglia. Brain Structure and Function. 2018;223:569-87.

    Article  PubMed  Google Scholar 

  24. Nozaradan S, Schwartze M, Obermeier C, Kotz SA. Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm. Cortex. 2017;95:156-68.

    Article  PubMed  Google Scholar 

  25. Djurfeldt M, Ekeberg Ö, Graybiel AM. Cortex–basal ganglia interaction and attractor states. Neurocomputing. 2001;38:573-9.

    Article  Google Scholar 

  26. Hélie S, Ell SW, Ashby FG. Learning robust cortico-cortical associations with the basal ganglia: an integrative review. Cortex. 2015;64:123-35.

    Article  PubMed  Google Scholar 

  27. Gaffan D, Easton A, Parker A. Interaction of inferior temporal cortex with frontal cortex and basal forebrain: double dissociation in strategy implementation and associative learning. Journal of Neuroscience. 2002;22(16):7288-96.

    Article  CAS  PubMed  Google Scholar 

  28. Walz A, Doppl K, Kaza E, Roschka S, Platz T, Lotze M. Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training. Behavioural brain research. 2015;278:393-403.

    Article  CAS  PubMed  Google Scholar 

  29. Ash H, Chang A, Ortiz RJ, Kulkarni P, Rauch B, Colman R, et al. Structural and functional variations in the prefrontal cortex are associated with learning in pre-adolescent common marmosets (Callithrix jacchus). Behavioural Brain Research. 2022;430:113920.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. Journal of Neuroscience. 2007;27(40):10659-73.

    Article  CAS  PubMed  Google Scholar 

  31. Luft AR, Manto M-U, Oulad Ben Taib N. Modulation of motor cortex excitability by sustained peripheral stimulation: the interaction between the motor cortex and the cerebellum. The Cerebellum. 2005;4:90-6.

  32. Tanaka Y, Fujimura N, Tsuji T, Maruishi M, Muranaka H, Kasai T. Functional interactions between the cerebellum and the premotor cortex for error correction during the slow rate force production task: an fMRI study. Experimental brain research. 2009;193:143-50.

    Article  PubMed  Google Scholar 

  33. Kelly AC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Competition between functional brain networks mediates behavioral variability. Neuroimage. 2008;39(1):527-37.

    Article  PubMed  Google Scholar 

  34. Gerraty RT, Davidow JY, Foerde K, Galvan A, Bassett DS, Shohamy D. Dynamic flexibility in striatal-cortical circuits supports reinforcement learning. Journal of Neuroscience. 2018;38(10):2442-53.

    Article  CAS  PubMed  Google Scholar 

  35. Yoo AH, Collins AG. How working memory and reinforcement learning are intertwined: A cognitive, neural, and computational perspective. Journal of cognitive neuroscience. 2022;34(4):551-68.

    Article  PubMed  Google Scholar 

  36. Granato G, Cartoni E, Da Rold F, Mattera A, Baldassarre G. Integrating unsupervised and reinforcement learning in human categorical perception: A computational model. Plos one. 2022;17(5):e0267838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Todorov DI, Capps RA, Barnett WH, Latash EM, Kim T, Hamade KC, et al. The interplay between cerebellum and basal ganglia in motor adaptation: A modeling study. PLoS One. 2019;14(4):e0214926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Caligiore D, Arbib MA, Miall RC, Baldassarre G. The super-learning hypothesis: Integrating learning processes across cortex, cerebellum and basal ganglia. Neuroscience & Biobehavioral Reviews. 2019;100:19-34.

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.H.M.T, S.H, and H.K.; writing—original draft preparation, A.H.M.T, S.H, N.D, M.G, A.A, and H.K.; writing—review and editing, A.H.M.T and H.K.; supervision, A.H.M.T and H.K. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Armin Hakkak Moghadam Torbati.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

The authors declare that this review article adheres to ethical standards and guidelines, including proper citation and attribution of sources. As this is just a review of other papers does not need other regulations regarding human and animal subjects.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torbati, A.H.M., Jami, S., Kobravi, H. et al. Underlying interactive neural mechanism of motor learning governed by the cerebellum, the basal ganglia, and motor/sensory cortex: a review from theoretical perspective. Neurosci Behav Physi (2024). https://doi.org/10.1007/s11055-024-01583-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11055-024-01583-0

Keywords

Navigation