Skip to main content
Log in

Cerebellar Activation Related to Saccadic Inaccuracies

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Using functional MRI, we assessed activity in the human cerebellum related to the properties of post-saccadic visual errors that drive the plasticity of saccadic eye movements. In the scanner subjects executed blocks of saccadic eye movements toward a target that could be randomly displaced during the saccade. Such an intra-saccadic shift was randomly forward or backward, and could be either small or large. Post-saccadic visual errors induced activation in several cerebellar areas. These areas included, but were not limited to, the oculomotor vermis which is known for its role in saccadic control. Large errors yielded more activation in the cerebellar hemispheres, whereas small errors induced more activation in the vermis. Forward shifts induced more activation than backward shifts. Our results suggest that the differences in cerebellar activation patterns for different sizes and directions of post-saccadic errors could underlie the behavioral differences observed between various saccadic adaptation paradigms. In addition, the outcome argues for an extended range of cerebellar target areas in electrophysiological studies on saccadic eye movement control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leigh RJ, Zee DS. The Neurology of Eye Movements. 4th ed. Oxford University Press; 2006.

  2. Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain. 2007;130(1):10–35.

    Article  PubMed  Google Scholar 

  3. McLaughlin SC. Parametric adjustment in saccadic eye movements. Percept Psychophys. 1967;2:359–62.

    Article  Google Scholar 

  4. Bridgeman B, Hendry D, Stark L. Failure to detect displacement of the visual world during saccadic eye movements. Vision Res. 1975;15(6):719–22.

    Article  PubMed  CAS  Google Scholar 

  5. Frens MA, van der Geest JN. Single errors predict the dynamics of saccade adaptation. Annual meeting of the Society of Neuroscience. San Diego CA; 2004.

  6. Srimal R, Diedrichsen J, Ryklin EB, Curtis CE. Obligatory adaptation of saccade gains. J Neurophysiol. 2008;99(3):1554–8.

    Article  PubMed  Google Scholar 

  7. Hopp JJ, Fuchs AF. The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol. 2004;72(1):27–53.

    Article  PubMed  Google Scholar 

  8. Pelisson D, Alahyane N, Panouilleres M, Tilikete C. Sensorimotor adaptation of saccadic eye movements. Neurosci Biobehav Rev. 2010;34(8):1103–20.

    Article  PubMed  CAS  Google Scholar 

  9. Iwamoto Y, Kaku Y. Saccade adaptation as a model of learning in voluntary movements. Exp Brain Res. 2010;204(2):145–62.

    Article  PubMed  Google Scholar 

  10. Wallman J, Fuchs AF. Saccadic gain modification: visual error drives motor adaptation. J Neurophysiol. 1998;80(5):2405–16.

    PubMed  CAS  Google Scholar 

  11. Bonnetblanc F, Baraduc P. Saccadic adaptation without retinal postsaccadic error. NeuroReport. 2007;18(13):1399–402.

    Article  PubMed  Google Scholar 

  12. Robinson FR, Noto CT, Bevans SE. Effect of visual error size on saccade adaptation in monkey. J Neurophysiol. 2003;90(2):1235–44.

    Article  PubMed  Google Scholar 

  13. Ethier V, Zee DS, Shadmehr R. Changes in control of saccades during gain adaptation. J Neurosci. 2008;28(51):13929–37.

    Article  PubMed  CAS  Google Scholar 

  14. Desmurget M, Pelisson D, Urquizar C, Prablanc C, Alexander GE, Grafton ST. Functional anatomy of saccadic adaptation in humans. Nat Neurosci. 1998;1(6):524–8.

    Article  PubMed  CAS  Google Scholar 

  15. Golla H, Tziridis K, Haarmeier T, Catz N, Barash S, Thier P. Reduced saccadic resilience and impaired saccadic adaptation due to cerebellar disease. Eur J Neurosci. 2008;27(1):132–44.

    Article  PubMed  Google Scholar 

  16. Desmurget M, Pelisson D, Grethe JS, Alexander GE, Urquizar C, Prablanc C, et al. Functional adaptation of reactive saccades in humans: a PET study. Exp Brain Res. 2000;132(2):243–59.

    Article  PubMed  CAS  Google Scholar 

  17. van Broekhoven PCA, Schraa-Tam CKL, van der Lugt A, Smits M, Frens MA, van der Geest JN. Cerebellar contributions to the processing of saccadic errors. Cerebellum. 2009;8(3):403–15.

    Article  PubMed  Google Scholar 

  18. Robinson FR, Fuchs AF. The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci. 2001;24:981–1004.

    Article  PubMed  CAS  Google Scholar 

  19. Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80(4):1911–31.

    PubMed  CAS  Google Scholar 

  20. Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19(24):10931–9.

    PubMed  CAS  Google Scholar 

  21. Straube A, Deubel H, Ditterich J, Eggert T. Cerebellar lesions impair rapid saccade amplitude adaptation. Neurology. 2001;57(11):2105–8.

    Article  PubMed  CAS  Google Scholar 

  22. Choi K-D, Kim H-J, Cho BM, Kim JS. Saccadic adaptation in lateral medullary and cerebellar infarction. Exp Brain Res. 2008;188(3):475–82.

    Article  PubMed  Google Scholar 

  23. Hayakawa Y, Nakajima T, Takagi M, Fukuhara N, Abe H. Human cerebellar activation in relation to saccadic eye movements: a functional magnetic resonance imaging study. Ophthalmologica. 2002;216(6):399–405.

    Article  PubMed  Google Scholar 

  24. Schraa-Tam CKL, van Broekhoven P, van der Geest JN, Frens MA, Smits M, van der Lugt A. Cortical and cerebellar activation induced by reflexive and voluntary saccades. Exp Brain Res. 2009;192(2):175–87.

    Article  PubMed  Google Scholar 

  25. Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33(1):127–38.

    Article  PubMed  Google Scholar 

  26. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46(1):39–46.

    Article  PubMed  Google Scholar 

  27. Mcdowell JE, Dyckman KA, Austin BP, Clementz BA. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn. 2008;68(3):255–70.

    Article  PubMed  Google Scholar 

  28. Thier P, Dicke PW, Haas R, Thielert C-D, Catz N. The role of the oculomotor vermis in the control of saccadic eye movements. Ann N Y Acad Sci. 2002;978:50–62.

    Article  PubMed  Google Scholar 

  29. Soetedjo R, Fuchs AF. Complex spike activity of purkinje cells in the oculomotor vermis during behavioral adaptation of monkey saccades. J Neurosci. 2006;26(29):7741–55.

    Article  PubMed  CAS  Google Scholar 

  30. Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol. 2005;15(24):2179–89.

    Article  PubMed  CAS  Google Scholar 

  31. Diedrichsen J, Verstynen T, Schlerf J, Wiestler T. Advances in functional imaging of the human cerebellum. Curr Opin Neurol. 2010;23(4):382–7.

    PubMed  Google Scholar 

  32. Howarth C, Peppiatt-Wildman C, Attwell D. The energy use associated with neural computation in the cerebellum. J Cereb Blood Flow Metab. 2010;30(2):403–14.

    Article  PubMed  Google Scholar 

  33. Dejardin S, Dubois S, Bodart JM, Schiltz C, Delinte A, Michel C, et al. PET study of human voluntary saccadic eye movements in darkness: effect of task repetition on the activation pattern. Eur J Neurosci. 1998;10(7):2328–36.

    Article  PubMed  CAS  Google Scholar 

  34. Dieterich M, Bucher SF, Seelos KC, Brandt T. Cerebellar activation during optokinetic stimulation and saccades. Neurology. 2000;54(1):148–55.

    Article  PubMed  CAS  Google Scholar 

  35. Nitschke MF, Arp T, Stavrou G, Erdmann C, Heide W. The cerebellum in the cerebro-cerebellar network for the control of eye and hand movements—an fMRI study. Prog Brain Res. 2005;148:151–64.

    Article  PubMed  CAS  Google Scholar 

  36. Voogd J, Schraa-Tam CKL, van der Geest JN, de Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. Cerebellum. 2012;11(2):392–410.

    Article  PubMed  Google Scholar 

  37. Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87(2):912–24.

    PubMed  CAS  Google Scholar 

  38. Thier P, Ilg UJ. The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol. 2005;15(6):645–52.

    Article  PubMed  CAS  Google Scholar 

  39. Nitschke MF, Binkofski F, Buccino G, Posse S, Erdmann C, Kömpf D, et al. Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study. Hum Brain Mapp. 2004;22(2):155–64.

    Article  PubMed  Google Scholar 

  40. Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. Neural correlates of reach errors. J Neurosci. 2005;25(43):9919–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by NWO-VIDI (MF and JvdG) and the Prinses Beatrix Fonds (JvdG). The authors like to thank Melissa Batson for proofreading the original draft of the manuscript.

Conflict of Interest

The authors state that there is no conflict of interest whatsoever regarding this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos N. van der Geest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liem, E.I.M.L., Frens, M.A., Smits, M. et al. Cerebellar Activation Related to Saccadic Inaccuracies. Cerebellum 12, 224–235 (2013). https://doi.org/10.1007/s12311-012-0417-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0417-z

Keywords

Navigation