Skip to main content

Visual Perception and Eye Movements

  • Chapter
  • First Online:
Eye Movement Research

Abstract

Our perception of the world appears to be steady and focused, despite the fact that our eyes are constantly moving. In this chapter, we review studies on the neural mechanisms and visual phenomena that endow us with stable visual perception despite frequent eye movements and gaze shifts. We describe how sensitivity to stationary and moving stimuli is suppressed just before and during a saccadic eye movement, a phenomenon referred to as saccadic suppression. We also depict the neural correlates of saccadic suppression based on studies conducted in alert monkeys during single-unit recordings and in human subjects using functional MRI. In addition to saccadic suppression, the phenomena of saccadic suppression of displacement and saccadic mislocalization suggest that motion sensitivity and perceived location of objects are altered during eye movements. For example, target motion during saccades goes largely unnoticed. Clearly visible targets that are flashed during an eye movement are apparently displaced towards the location of the end point of the saccade. These findings suggest that visual perception is based on the spatio-temporal integration of information gathered during sequential fixation periods. To ensure stability of our percepts during eye movements, some form of compensation or remapping must take place to compensate for retinal displacements of stimuli in a viewed scene. We also examine the interactions that take place between motion perception and pursuit eye movement. Furthermore, we review findings from behavioral, psychophysical and imaging studies in human observers and single-unit recordings in non-human primates that are relevant to perceptual phenomena arising during saccadic and pursuit eye movements. These studies suggest that conscious vision results from the dynamic interplay between sensory and motor processes. Specifically, we propose that our perception of the visual world is built up over time during consecutive fixations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gaze shifts arise from the combination of head and eye movements. In the laboratory the subject’s head is often rendered stationary by the use of a chin rest or bite bar. In the real world, saccades exceeding 20° are usually accompanied by a shift in head position in the direction of the eye movement.

  2. 2.

    Michelson contrast is defined for periodic patterns as (Lmax − Lmin)/(Lmax + Lmin), where L corresponds to the luminance level at any given spatial location, Lmax corresponds to the highest level and Lmin to the lowest level. Michelson contrast varies between 0 and 1.

  3. 3.

    The Stiles-Crawford effect of the first kind (Stiles & Crawford, 1933) describes the directional selectivity of the light response of the photoreceptors. Light entering the eye at the rim of the pupil is less effective for vision than for light of the same intensity that enters the eye from the center of the pupil.

Bibliography

  • Albright, A. D., & Stoner, G. R. (1995). Visual motion perception. Proceedings of the National Academy of Sciences of the United States of America, 92, 2433–2440.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen, R. A., Snyder, L. H., Bradley, D. C., & Xing, J. (1997). Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annual Review of Neuroscience, 20(1), 303–330.

    Article  PubMed  Google Scholar 

  • Andersen, R. A., Snyder, L. H., Batista, A. P., Buneo, C. A., & Cohen, Y. E. (1998). Posterior parietal areas specialized for eye movements (LIP) and reach (PRR) using a common coordinate frame. Novartis Foundation Symposium, 218, 109–122.

    Google Scholar 

  • Awater, H., & Lappe, M. (2006). Mislocalization of perceived saccade target position induced by perisaccadic visual stimulation. Journal of Neuroscience, 26(1), 12–20.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423.

    Article  PubMed  Google Scholar 

  • Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.

    Article  PubMed  Google Scholar 

  • Baumann, O., Frank, G., Rutschmann, R. M., & Greenlee, M. W. (2007). Cortical activation during sequences of memory-guided saccades: A functional MRI study. NeuroReport, 18(5), 451–455.

    Article  PubMed  Google Scholar 

  • Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851–854.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bischof, N., & Kramer, E. (1968). Untersuchungen und Ãœberlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen [Investigations and considerations of directional perception during voluntary saccadic eye movements]. Psychologische Forschung, 32(3), 185–218.

    Article  PubMed  Google Scholar 

  • Blurton, S. P., Raabe, M., & Greenlee, M. W. (2011) Differential cortical activation during saccadic adaptation. Journal of Neurophysiology, 107, 1738–1747.

    Google Scholar 

  • Bouma, H. (1970). Interaction effects in parafoveal letter recognition. Nature, 226, 177–178.

    Article  PubMed  Google Scholar 

  • Brandt, T., Bartenstein, P., Janek, A., & Dieterich, M. (1998). Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain, 121, 1749–1758.

    Article  PubMed  Google Scholar 

  • Bremmer, F. (2011). Multisensory space: From eye-movements to self-motion. Journal of Physiology, 589(Pt 4), 815–823.

    Article  PubMed  Google Scholar 

  • Bremmer, F., Duhamel, J. R., Ben Hamed, S., & Graf, W. (2002) Heading encoding in the macaque ventral intraparietal area (VIP). European Journal of Neuroscience, 16, 1554–1568.

    Google Scholar 

  • Bremmer, F., Ilg, U. J., Thiele, A., Distler, C., & Hoffmann, K. P. (1997). Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. Journal of Neurophysiology, 77, 944–961.

    Article  PubMed  Google Scholar 

  • Bremmer, F., Kubischik, M., Hoffmann, K.-P., & Krekelberg, B. (2009). Neural dynamics of saccadic suppression. Journal of Neuroscience, 29(40), 12374–12383.

    Article  PubMed  Google Scholar 

  • Bridgeman, B., Hendry, D., & Stark, L. (1975). Failure to detect displacement of the visual world during saccadic eye movements. Vision Research, 15(6), 719–722.

    Article  PubMed  Google Scholar 

  • Bridgeman, B., Kirch, M., & Sperling, A. (1981). Segregation of cognitive and motor aspects of visual function using induced motion. Perception and Psychophysics, 29(4), 336–342.

    Article  Google Scholar 

  • Britten, K. H. (2008). Mechanisms of self-motion perception. Annual Review of Neuroscience, 31, 389–410.

    Article  PubMed  Google Scholar 

  • Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12(12), 4745–4765.

    Article  PubMed  Google Scholar 

  • Burr, D. C., Morrone, M. C., & Ross, J. (1994). Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature, 371, 511–513.

    Article  PubMed  Google Scholar 

  • Burr, D. C. (2014). Motion perception: Human psychophysics. In: J. S. Werner & L. Chalupa (Eds.), The new visual neurosciences (pp. 763–776). Cambridge, MA, USA: MIT Press.

    Google Scholar 

  • Campbell, F. W., & Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. The Journal of Physiology, 197(3), 551–566.

    Google Scholar 

  • Campbell, F. W., & Maffei, L. (1981). The influence of spatial frequency and contrast on the perception of moving patterns. Vision Research, 21(5), 713–721.

    Article  PubMed  Google Scholar 

  • Chung, S. T. L., Legge, G. E., & Tjan, B. S. (2002). Spatial-frequency characteristics of letter identification in central and peripheral vision. Vision Research, 42(18), 2137–2152.

    Article  PubMed  Google Scholar 

  • Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., et al. (1998). A common network of functional areas for attention and eye movements. Neuron, 21(4), 761–773.

    Article  PubMed  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 215–229.

    Google Scholar 

  • Cornelissen, F. W., & Greenlee, M. W. (2000). Visual memory for random block patterns defined by luminance and color contrast. Vision Research, 40(3), 287–299.

    Article  PubMed  Google Scholar 

  • Cowan, N. (2004). Working memory capacity. New York: Psychology Press, Taylor & Francis.

    Google Scholar 

  • Crespi, S., Biagi, L., D’avossa, G., Burr, D. C., Tosetti, M., & Morrone, M. C. (2011). Spatiotopic coding of BOLD signal in human visual cortex depends on spatial attention. PLoS ONE, 6(7), e21661.

    Google Scholar 

  • Curcio, C. A., Sloan, K. R., Packer, O., Hendrickson, A. E., & Kalina, R. E. (1987). Distribution of cones in human and monkey retina: Individual variability and radial asymmetry. Science, 236, 579–582.

    Article  PubMed  Google Scholar 

  • D’avossa, G., Tosetti, M., Crespi, S., Biagi, L., Burr, D. C., & Morrone, M. C. (2007). Spatiotopic selectivity of BOLD responses to visual motion in human area MT. Nature Neuroscience, 10(2), 249–255.

    Google Scholar 

  • DeAngelis, G. C. & Angelaki, D. E. (2012). Visual-vestibular integration for self-motion perception. In M. M. Murray & M. T. Wallace (Eds.), The neural bases of multisensory processes. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Desmurget, M., Pélisson, D., Urquizar, C., Prablanc, C., Alexander, G. E., & Grafton, S. T. (1998). Functional anatomy of saccadic adaptation in humans. Nature Neuroscience, 1(6), 524–528.

    Article  PubMed  Google Scholar 

  • Deubel, H., & Schneider, W. X. (1996). Saccade target selection and object recognition: Evidence for a common attentional mechanism. Vision Research, 36(12), 1827–1837.

    Article  PubMed  Google Scholar 

  • Deubel, H., Schneider, W. X., & Bridgeman, B. (1996). Postsaccadic target blanking prevents saccadic suppression of image displacement. Vision Research, 36(7), 985–996.

    Article  PubMed  Google Scholar 

  • Diamond, M. R., Ross, J., & Morrone, M. C. (2000). Extraretinal control of saccadic suppression. Journal of Neuroscience, 20(9), 3449–3455.

    Article  PubMed  Google Scholar 

  • Ditchburn, R. W., & Ginsborg, B. L. (1952). Vision with a stabilized retinal image. Nature, 170, 36–37.

    Article  PubMed  Google Scholar 

  • Dodge, R. (1900). Visual perception during eye movement. Psychological Review, 7, 454–465.

    Article  Google Scholar 

  • Dubner, R., & Zeki, S. M. (1971). Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Research, 35(2), 528–532.

    Article  PubMed  Google Scholar 

  • Dukelow, S. P., DeSouza, J. F., Culham, J. C., van den Berg, A. V., Menon, R. S., & Vilis, T. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. Journal of Neurophysiology, 86, 1991–2000.

    Article  PubMed  Google Scholar 

  • Eickhoff, S. B., Weiss, P. H., Amunts, K., Fink, G. R., & Zilles, K. (2006). Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Human Brain Mapping, 27(7), 611–621.

    Article  PubMed  Google Scholar 

  • Fechner, G. T. (1889). Elemente der Psychophysik. Leipzig: Breitkopf & Härtel Verlag.

    Google Scholar 

  • Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: The psychology of looking and seeing. Oxford, U.K.: Oxford University Press.

    Book  Google Scholar 

  • Fischer, B. (1986). The role of attention in the preparation of visually guided eye movements in monkey and man. Psychological Research, 48(4), 251–257.

    Article  PubMed  Google Scholar 

  • Fischer, B., & Boch, R. (1981). Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Experimental Brain Research, 44(2), 129–137.

    Article  PubMed  Google Scholar 

  • Fischer, B., Biscaldi, M., & Gezeck, S. (1997). On the development of voluntary and reflexive components in human saccade generation. Brain Research, 754, 285–297.

    Article  PubMed  Google Scholar 

  • Frank, S. M., Baumann, O., Mattingley, J. B., & Greenlee, M. W. (2014). Vestibular and visual responses in human posterior insular cortex. Journal of Neurophysiology, 112(10), 2481–2491.

    Article  PubMed  Google Scholar 

  • Gerardin, P., Miquée, A., Urquizar, C., & Pélisson, D. (2012). Functional activation of the cerebral cortex related to sensorimotor adaptation of reactive and voluntary saccades. NeuroImage, 61(4), 1100–1112.

    Article  PubMed  Google Scholar 

  • Goldberg, M. E., & Bruce, C. J. (1985). Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Research, 25(3), 471–481.

    Article  PubMed  Google Scholar 

  • Goldberg, M. E., & Wurtz, R. H. (1972). Activity of superior colliculus in behaving monkey. II. Effect of attention on neuronal responses. Journal of Neurophysiology, 35(4), 560–574.

    Google Scholar 

  • Greenlee, M. W., Schira, M. M., & Kimmig, H. (2002). Coherent motion pops out during smooth pursuit. NeuroReport, 13(10), 1313–1316.

    Article  PubMed  Google Scholar 

  • Grefkes, C., & Fink, G. R. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. Journal of Anatomy, 207, 3–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., & Malach, R. (1998). A sequence of object processing stages revealed by fMRI in the human occipital lobe. Human Brain Mapping, 6, 316–328.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guldin, W. O., & Grüsser, O. J. (1998). Is there a vestibular cortex? Trends in Neurosciences, 21(6), 254–259.

    Article  PubMed  Google Scholar 

  • Guthrie, B. L., Porter, J. D., & Sparks, D. L. (1983). Corollary discharge provides accurate eye position. Science, 221, 1193–1195.

    Article  PubMed  Google Scholar 

  • Haarmeier, T., Thier, P., Repnow, M., & Petersen, D. (1997). False perception of motion in a patient who cannot compensate for eye movements. Nature, 389, 849–852.

    Google Scholar 

  • Hamker, F. H., Zirnsak, M., Ziesche, A., & Lappe, M. (2011). Computational models of spatial updating in peri-saccadic perception. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366(1564), 554–571.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458, 632–635.

    Google Scholar 

  • Henderson, J. M. (1997). Transsaccadic memory and integration during real-world object perception. Psychological Science, 8, 51–55.

    Article  Google Scholar 

  • Helmholtz, H. (1867). Handbuch der Physiologischen Optik. Leipzig: Leopold Voss.

    Google Scholar 

  • Hess, R. F., & Nordby, K. (1986). Spatial and temporal limits of vision in the achromat. The Journal of Physiology, 371, 365–385.

    Google Scholar 

  • Hirsch, J., & Curcio, C. A. (1989). The spatial resolution capacity of human foveal retina. Vision Research, 29(9), 1095–1101.

    Article  PubMed  Google Scholar 

  • Honda, H. (1989). Perceptual localization of visual stimuli flashed during saccades. Perception and Psychophysics, 45(2), 162–174.

    Article  PubMed  Google Scholar 

  • Honda, H. (1991). The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Research, 31(11), 1915–1921.

    Article  PubMed  Google Scholar 

  • Hopp, J. J., & Fuchs, A. F. (2004). The characteristics and neuronal substrate of saccadic eye movement plasticity. Progress in Neurobiology, 72(1), 27–53.

    Article  PubMed  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160, 106–154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huk, A. C., Dougherty, R. F., & Heeger, D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST. Journal of Neuroscience, 22(16), 7195–7205.

    Article  PubMed  Google Scholar 

  • Ilg, U. J., Schumann, S., & Thier, P. (2004). Posterior parietal cortex neurons encode target motion in world-centered coordinates. Neuron, 43, 145–151.

    Article  PubMed  Google Scholar 

  • Irwin, D. E. (1991). Information integration across saccadic eye movements. Cognitive Psychology, 213, 420–456.

    Article  Google Scholar 

  • James, W. (1890). The principles of psychology. Holt: New York.

    Google Scholar 

  • Kamitani, Y., & Tong, F. (2005). Decoding the visual and subjective contents of the human brain. Nature Neuroscience, 8(5), 679–685.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khayat, P. S., Spekreijse, H., & Roelfsema, P. R. (2004). Visual information transfer across eye movements in the monkey. Vision Research, 44(25), 2901–2917.

    Article  PubMed  Google Scholar 

  • Kimmig, H., Ohlendorf, S., Speck, O., Sprenger, A., Rutschmann, R. M., Haller, S., et al. (2008). fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements. Neuropsychologia, 46, 2203–2213.

    Article  PubMed  Google Scholar 

  • Kolev, O., Mergner, T., Kimmig, H., & Becker, W. (1996). Detection thresholds for object motion and self-motion during vestibular and visuo-oculomotor stimulation. Brain Research Bulletin, 40(5–6), 451–458.

    Article  PubMed  Google Scholar 

  • Komatsu, H., & Wurtz, R. H. (1988a). Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. Journal of Neurophysiology, 60(2), 580–603.

    Google Scholar 

  • Komatsu, H., & Wurtz, R. H. (1988b). Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. Journal of Neurophysiology, 60(2), 621–644.

    Google Scholar 

  • Kourtzi, Z., & Kanwisher, N. (2000). Cortical regions involved in perceiving object shape. Journal of Neuroscience, 20, 3310–3318.

    Article  PubMed  Google Scholar 

  • Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35(13), 1897–1916.

    Article  PubMed  Google Scholar 

  • Li, W., & Matin, L. (1990). The influence of saccade length on the saccadic suppression of displacement detection. Perception and Psychophysics, 48, 453–458.

    Article  PubMed  Google Scholar 

  • Lisberger, S. G., Morris, E. J., & Tychsen, L. (1987). Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Annual Review of Neuroscience, 10, 97–129.

    Article  PubMed  Google Scholar 

  • Lopez, C., & Blanke, O. (2011). The thalamocortical vestibular system in animals and humans. Brain Research Reviews, 67(1–2), 119–146.

    Article  PubMed  Google Scholar 

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.

    Article  PubMed  Google Scholar 

  • Mack, A., & Herman, E. (1973). Position constancy during pursuit eye movements: An investigation of the Filehne illusion. Quarterly Journal of Experimental Psychology, 25, 71–84.

    Google Scholar 

  • Matin, L., & Pearce, D. G. (1965). Visual perception of direction for stimuli flashed during voluntary saccadic eye movements. Science, 148(3676), 1485–1488.

    Article  PubMed  Google Scholar 

  • McLaughlin, S. C. (1967). Parametric adjustment in saccadic eye movements. Perception and Psychophysics, 2, 359–362.

    Article  Google Scholar 

  • Melcher, D., & Kowler, E. (2001). Visual scene memory and the guidance of saccadic eye movements. Vision Research, 41(2001), 3597–3611.

    Article  PubMed  Google Scholar 

  • Melmoth, D. R., Kukkonen, H. T., Mäkelä, P. K., & Rovamo, J. M. (2000). The effect of contrast and size scaling on face perception in foveal and extrafoveal vision. Investigative Ophthalmology & Visual Science, 41(9), 2811–2819.

    Google Scholar 

  • Merriam, E. P., Genovese, C. R., & Colby, C. L. (2007). Remapping in human visual cortex. Journal of Neurophysiology, 97, 1738–1755.

    Article  PubMed  Google Scholar 

  • Morgan, M. J., & Ward, R. (1980). Conditions for motion flow in dynamic visual noise. Vision Research, 20(5), 431–435.

    Article  PubMed  Google Scholar 

  • Morrone, M. C. (2014). Interactions between eye movements and vision: Perception during saccades. In J. S. Werner & L. M. Chalupa (Eds.), The new visual neurosciences (pp. 947–962). Cambridge, MA: MIT Press.

    Google Scholar 

  • Morrone, M. C., Ross, J., & Burr, D. C. (1997). Apparent position of visual targets during real and simulated saccadic eye movements. Journal of Neuroscience, 17(20), 7941–7953.

    Article  PubMed  Google Scholar 

  • Müller, R., & Greenlee, M. W. (1994). Effect of contrast and adaptation on the perception of the direction and speed of drifting gratings. Vision Research, 34(16), 2071–2092.

    Article  PubMed  Google Scholar 

  • Naka, K. I., & Rushton, W. A. (1966). S-potentials from colour units in the retina of fish (Cyprinidae). Journal of Physiology, 185(3), 536–555.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama, K. (1985). Biological image motion processing: A review. Vision Research, 25, 625–660.

    Article  PubMed  Google Scholar 

  • Newsome, W. T., Britten, K. H., Salzman, C. D., & Movshon, J. A. (1990). Neuronal mechanisms of motion perception. Cold Spring Harbor Symposia on Quantitative Biology, 55, 697–705.

    Article  PubMed  Google Scholar 

  • Noto, C. T., Watanabe, S., & Fuchs, A. F. (1999). Characteristics of simian adaptation fields produced by behavioral changes in saccade size and direction. Journal of Neurophysiology, 81(6), 2798–2813.

    Article  PubMed  Google Scholar 

  • Ohlendorf, S., Sprenger, A., Speck, O., Glauche, V., Haller, S., & Kimmig, H. (2010). Visual motion, eye motion, and relative motion: A parametric fMRI study of functional specializations of smooth pursuit eye movement network areas. Journal of Vision, 10(14):21, 1–15.

    Google Scholar 

  • Ohlendorf, S., Sprenger, A., Speck, O., Haller, S., & Kimmig, H. (2008). Optic flow stimuli in and near the visual field centre: A group fMRI study of motion sensitive regions. PLoS ONE, 3, e4043.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ordy, J. M., Massopust, L. C., & Wolin, L. R. (1962). Postnatal development of the retina, electroretinogram, and acuity in the Rhesus monkey. Experimental Neurology, 5, 364–382.

    Article  PubMed  Google Scholar 

  • Østerberg, G. (1935). Topography of the layer of rods and cones in the human retina. Acta Ophthalmologica Kbh, 61, 1–102.

    Google Scholar 

  • Pasternak, T., & Greenlee, M. W. (2005). Working memory in primate sensory systems. Nature Reviews Neuroscience, 6(2), 97–107.

    Article  PubMed  Google Scholar 

  • Pelisson, D., Alahyane, N., Panouilleres, M. P., & Tilikete, C. (2010). Sensorimotor adaptation of saccadic eye movements. Neuroscience and Biobehavioral Reviews, 34(8), 1103–1120.

    Google Scholar 

  • Pelli, D. G. (2008). Crowding: A cortical constraint on object recognition. Current Opinion in Neurobiology, 18(4), 445–451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry, R. J., & Zeki, S. (2000). The neurology of saccades and covert shifts in spatial attention. Brain, 123(11), 2273–2288.

    Google Scholar 

  • Pierrot-Deseilligny, C., Rivaud, S., Gaymard, B., & Agid, Y. (1991). Cortical control of memory-guided saccades in man. Experimental Brain Research, 83, 607–617.

    Article  PubMed  Google Scholar 

  • Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.

    Article  PubMed  Google Scholar 

  • Quessy, S., Quinet, J., & Freedman, E. G. (2010). The locus of motor activity in the superior colliculus of the rhesus monkey is unaltered during saccadic adaptation. Journal of Neuroscience, 30, 14235–14244.

    Article  PubMed  Google Scholar 

  • Raabe, M., Fischer, V., Bernhardt, D., & Greenlee, M. W. (2013). Neural correlates of spatial working memory load in a delayed match-to-sample saccade task. NeuroImage, 71, 84–91.

    Article  PubMed  Google Scholar 

  • Rashbass, C. (1961). The relationship between saccadic and smooth tracking eye movements. Journal of Physiology, 159, 326–338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rentschler, I., & Treutwein, B. (1985). Loss of spatial phase relationships in extrafoveal vision. Nature, 313, 308–310.

    Article  PubMed  Google Scholar 

  • Reppas, J. B., Usrey, W. M., & Reid, R. C. (2002). Saccadic eye movements modulate visual responses in the lateral geniculate nucleus. Neuron, 35(5), 961–974.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., Hughes, H. C., & Fendrich, R. (1991). The reduction of saccadic latency by prior offset of the fixation point: An analysis of the gap effect. Perception and Psychophysics, 49(2), 167–175.

    Article  PubMed  Google Scholar 

  • Richards, W. (1969). Saccadic suppression. Journal of the Optical Society of America, 59, 617–623.

    Article  PubMed  Google Scholar 

  • Riggs, L. A., Armington, J. C., & Ratliff, F. (1954). Motions of the retinal image during fixation. Journal of the Optical Society of America, 44, 315–321.

    Article  PubMed  Google Scholar 

  • Riggs, L. A., & Schick, A. M. L. (1968). Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens. Vision Research, 8, 159–169.

    Article  PubMed  Google Scholar 

  • Ross, J., Morrone, M. C., Goldberg, M. E., & Burr, D. C. (2001). Changes in visual perception at the time of saccades. Trends in Neurosciences, 24(2), 113–121.

    Article  PubMed  Google Scholar 

  • Rovamo, J., Virsu, V., & Nätänen, R. (1978). Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature, 271, 54–56.

    Article  PubMed  Google Scholar 

  • Schlag, J., & Schlag-Rey, M. (1995). Illusory localization of stimuli flashed in the dark before saccades. Vision Research, 35(16), 2347–2357.

    Article  PubMed  Google Scholar 

  • Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: A selective review. Journal of Vision, 11(5), 9. https://doi.org/10.1167/11.5.9.

    Article  PubMed  Google Scholar 

  • Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207–214.

    Article  PubMed  Google Scholar 

  • Smith, A. T., Greenlee, M. W., Singh, K. D., Kraemer, F. M., & Hennig, J. (1998). The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). Journal of Neuroscience, 18(10), 3816–3830.

    Article  PubMed  Google Scholar 

  • Smith, A. T., Singh, K. D., & Greenlee, M. W. (2000). Attentional suppression of activity in the human visual cortex. NeuroReport, 11(2), 271–277.

    Article  PubMed  Google Scholar 

  • Smith, A. T., Williams, A. L., & Singh, K. D. (2004). Negative BOLD in the visual cortex: Evidence against blood stealing. Human Brain Mapping, 21(4), 213–220.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sneve, M. H., Alnaes, D., Endestad, T., Greenlee, M. W., & Magnussen, S. (2012). Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. NeuroImage, 63(1), 166–178.

    Article  PubMed  Google Scholar 

  • Sommer, M. A., & Wurtz, R. H. (2002). A pathway in primate brain for internal monitoring of movements. Science (New York, NY), 296(5572), 1480–1482.

    Article  Google Scholar 

  • Spering, M., Kerzel, D., Braun, D. I., Hawken, M. J., & Gegenfurtner, K. R. (2005). Effects of contrast on smooth pursuit eye movements. Journal of Vision, 5(5), 455–465.

    Article  PubMed  Google Scholar 

  • Spering, M., Pomplun, M., & Carrasco, M. (2011). Tracking without perceiving: A dissociation between eye movements and motion perception. Psychological Science, 22(2), 216–225.

    Article  PubMed  Google Scholar 

  • Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology, 43(6), 482–489.

    Article  PubMed  Google Scholar 

  • Stark, L., Kong, R., Schwartz, S., Hendry, D., & Bridgeman, B. (1976) Saccadic suppression of image displacement. Vision Research, 16, 1185–1187.

    Google Scholar 

  • Steenrod, S. C., Phillips, M. H., & Goldberg, M. E. (2013). The lateral intraparietal area codes the location of saccade targets and not the dimension of the saccades that will be made to acquire them. Journal of Neurophysiology, 109(10), 2596–2605.

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinbach, M. J. (1976). Pursuing the perceptual rather than the retinal stimulus. Vision Research, 16, 1371–1376.

    Article  PubMed  Google Scholar 

  • Stiles, W. S. & Crawford, B. H. (1933) the luminous efficiency of the eye pupil at different points. Proceedings of the Royal Society of London. Series B, 112, 428–450.

    Google Scholar 

  • Stone, L. S., & Thompson, P. (1992). Human speed perception is contrast dependent. Vision Research, 32(8), 1535–1549.

    Article  PubMed  Google Scholar 

  • Stone, L. S., Beutter, B. R., & Lorenceau, J. (2000). Visual motion integration for perception and pursuit. Perception, 29(7), 771–787.

    Article  PubMed  Google Scholar 

  • Strasburger, H., Harvey, L. O., & Rentschler, I. (1991). Contrast thresholds for identification of numeric characters in direct and eccentric view. Perception and Psychophysics, 49, 495–508.

    Article  PubMed  Google Scholar 

  • Sunaert, S., Van Hecke, P., Marchal, G., & Orban, G. A. (1999). Motion-responsive regions of the human brain. Experimental Brain Research, 127(4), 355–370.

    Article  PubMed  Google Scholar 

  • Sylvester, R., Haynes, J. D., & Rees, G. (2005). Saccadic eye movements modulate visual responses in the lateral geniculate nucleus. Current Biology, 15, 37–41.

    Article  PubMed  Google Scholar 

  • Thiele, A., Henning, P., Kubischik, M., & Hoffmann, K. P. (2002). Neural mechanisms of saccadic suppression. Science, 295(5564), 2460–2462.

    Article  PubMed  Google Scholar 

  • Thompson, P. (1983). Discrimination of moving gratings at and above detection threshold. Vision Research, 23, 1533–1538.

    Article  PubMed  Google Scholar 

  • Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754.

    Article  PubMed  Google Scholar 

  • Tootell, R. B., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., et al. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. Journal of Neuroscience, 15(4), 3215–3230.

    Article  PubMed  Google Scholar 

  • Ungerleider, L. G., Courtney, S. M., & Haxby, J. V. (1998). A neural system for human visual working memory. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 883–890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallines, I., & Greenlee, M. W. (2006). Saccadic suppression of retinotopically localized blood oxygen level-dependent responses in human primary visual area V1. Journal of Neuroscience, 26(22), 5965–5969.

    Article  PubMed  Google Scholar 

  • van Essen, D. C., & Gallant, J. L. (1994). Neural mechanisms of form and motion processing in the primate visual system. Neuron, 13, 1–10.

    Article  PubMed  Google Scholar 

  • Volkmann, F. C., Schick, A. M., & Riggs, L. A. (1968). Time course of visual inhibition during voluntary saccades. Journal of the Optical Society of America, 58, 562–569.

    Article  PubMed  Google Scholar 

  • von Holst, E., & Mittelstaedt, H. (1950). Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Die Naturwissenschaften, 20, 464–476.

    Google Scholar 

  • Watamaniuk, S. N., & Heinen, S. J. (1999). Human smooth pursuit direction discrimination. Vision Research, 39(1), 59–70.

    Article  PubMed  Google Scholar 

  • Whitney, D., & Levi, D. M. (2011). Visual crowding: A fundamental limit on conscious perception and object recognition. Trends in Cognitive Sciences, 15(4), 160–168.

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams, D. W., & Sekuler, R. (1984). Coherent global motion percepts from stochastic local motions. Vision Research, 24(1), 55–62.

    Article  PubMed  Google Scholar 

  • Wright, M. J., & Gurney, K. N. (1992). Lower threshold of motion for one and two dimensional patterns in central and peripheral vision. Vision Research, 32, 121–134.

    Article  PubMed  Google Scholar 

  • Zeki, S. M. (1978). Functional specialisation in the visual cortex of the rhesus monkey. Nature, 274, 423–428.

    Article  PubMed  Google Scholar 

  • Zuber, B. L., & Stark, L. (1966). Saccadic suppression: Elevation of visual threshold associated with saccadic eye movements. Experimental Neurology, 16, 65–79.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Jale Özyurt, Sebastian M. Frank, John S. Werner and Lothar Spillmann for their helpful comments. Author MWG was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG, GR 988/25-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Greenlee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greenlee, M.W., Kimmig, H. (2019). Visual Perception and Eye Movements. In: Klein, C., Ettinger, U. (eds) Eye Movement Research. Studies in Neuroscience, Psychology and Behavioral Economics. Springer, Cham. https://doi.org/10.1007/978-3-030-20085-5_5

Download citation

Publish with us

Policies and ethics