Skip to main content

Advertisement

Log in

Magnetic Resonance Imaging Biomarkers in Patients with Progressive Ataxia: Current Status and Future Direction

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

A diagnostic challenge commonly encountered in neurology is that of an adult patient presenting with ataxia. The differential is vast and clinical assessment alone may not be sufficient due to considerable overlap between different causes of ataxia. Magnetic resonance (MR)-based biomarkers such as voxel-based morphometry, MR spectroscopy, diffusion-weighted and diffusion-tensor imaging and functional MR imaging are gaining great attention for their potential as indicators of disease. A number of studies have reported correlation with clinical severity and underlying pathophysiology, and in some cases, MR imaging has been shown to allow differentiation of conditions causing ataxia. However, despite recent advances, their sensitivity and specificity vary. In addition, questions remain over their validity and reproducibility, especially when applied in routine clinical practice. This article extensively reviews the current literature regarding MR-based biomarkers for the patient with predominantly adult-onset ataxia. Imaging features characteristic of a particular ataxia are provided and features differentiating ataxia groups and subgroups are discussed. Finally, discussion will turn to the feasibility of applying these biomarkers in routine clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Luft AR, Skalej M, Welte D, Kolb R, Burk K, Schulz JB, et al. A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI. Magn Reson Med. 1998;40(1):143–51. Clinical trial.

    Article  PubMed  CAS  Google Scholar 

  2. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11(6 Pt 1):805–21. Research support, non-US Government review.

    Article  PubMed  CAS  Google Scholar 

  3. Good C, Johnsrude I, Ashburner J, Henson R, Friston K, Frackowiak R. A voxel-based morphometric study of aging in 465 normal adult human brains. Neuroimage. 2001;14:21–36.

    Article  PubMed  CAS  Google Scholar 

  4. Moffett J, Ross B, Arun P, Madhavarao C, Namboodiri A. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81:89–131.

    Article  PubMed  CAS  Google Scholar 

  5. Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec. 2001;265:54–84.

    Article  PubMed  CAS  Google Scholar 

  6. Castillo M, Kwock L, Mukherji S. Clinical applications of proton MR spectroscopy. Am J Radiol. 1996;17:1–15.

    CAS  Google Scholar 

  7. Miller B. A Review of Chemical Issues in 1H NMR Spectroscopy: N-Acetyl-L-aspartate, Creatine and Choline. NMR Biomed. 1991;4:47–52.

    Article  PubMed  CAS  Google Scholar 

  8. Rosen Y, Lenkinski R. Recent advances in magnetic resonance neurospectroscopy. Neurother. 2007;4:330–45.

    Article  CAS  Google Scholar 

  9. Farina L, Pareyson D, Minati L, Ceccherini I, Chiapparini L, Romano S, et al. Can MR imaging diagnose adult-onset Alexander disease? AJNR Am J Neuroradiol. 2008;29(6):1190–6.

    Article  PubMed  CAS  Google Scholar 

  10. Mountford C, Stanwell P, Lin A, Ramadan S, Ross B. Neurospectroscopy: the past, present and future. Chem Rev. 2010;110:3060–86.

    Article  PubMed  CAS  Google Scholar 

  11. Prichard J. What the clinician can learn from MRS lactate measurements [review]. NMR Biomed. 1991;4:99–102.

    Article  PubMed  CAS  Google Scholar 

  12. Barkovich AJ, Good WV, Koch TK, Berg BO. Mitochondrial disorders: analysis of their clinical and imaging characteristics. AJNR Am J Neuroradiol. 1993;14(5):1119–37.

    PubMed  CAS  Google Scholar 

  13. Petroff O, Graham G, Blamire A. Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes. Neurology. 1992;42:1349–54.

    Article  PubMed  CAS  Google Scholar 

  14. VonRogulija P, Kovac W, Schmid H. Metroniadazole encephalopathy in rats. Acta Neuropathol. 1973;25:36–44.

    Article  Google Scholar 

  15. Ross B, Coletti P, Lin A. Magnetic resonance spectroscopy of the brain: neurospectroscopy. In: Elderman R, Hesselink J, Zlatkin M, Crues J, editors. Clinical magnetic resonance imaging. 3rd ed. Philadelphia: Saunders; 2006. p. 1840–901.

    Google Scholar 

  16. Della Nave R, Foresti S, Tessa C, Moretti M, Ginestroni A, Gavazzi C, et al. ADC mapping of neurodegeneration in the brainstem and cerebellum of patients with progressive ataxias. Neuroimage. 2004;22(2):698–705.

    Article  PubMed  Google Scholar 

  17. Raz E, Cercignani M, Sbardella E, Totaro P, Pozzilli C, Bozzali M, et al. Clinically isolated syndrome suggestive of multiple sclerosis: voxelwise regional investigation of white and grey matter. Radiology. 2010;254(1):227–34.

    Article  PubMed  Google Scholar 

  18. Matthews P, Jezzard P. Functional magnetic resonance imaging. J Neurol Neurosurg Psychiatr. 2004;75:6–12.

    PubMed  CAS  Google Scholar 

  19. Matilla-Duenas A. The ever expanding spinocerebellar ataxias. Editorial. Cerebellum. 2012. doi:10.1007/s12311-012-0376-4.

  20. Burk K, Abele M, Fetter M, Dichgans J, Skalej M, Laccone F, et al. Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119(Pt 5):1497–505.

    Article  PubMed  Google Scholar 

  21. Schols L, Amoiridis G, Buttner T, Przuntek H, Epplen J, Riess O. Autosomal dominant cerebellar ataxia: phenotypic differences in genertically defined subtypes. Ann Neurol. 1997;42:924–32.

    Article  PubMed  CAS  Google Scholar 

  22. Ginestroni A, Della Nave R, Tessa C, Giannelli M, De Grandis D, Plasmati R, et al. Brain structural damage in spinocerebellar ataxia type 1: a VBM study. J Neurol. 2008;255(8):1153–8. Research support, non-US Government review.

    Article  PubMed  Google Scholar 

  23. Nagaoka U, Suzuki Y, Kawanami T, Kurita K, Shikama Y, Honda K, et al. Regional differences in genetic subgroup frequency in hereditary cerebellar ataxia, and a morphometrical study of brain MR images in SCA1, MJD and SCA6. J Neurol Sci. 1999;164:187–94.

    Article  PubMed  CAS  Google Scholar 

  24. Schulz JB, Borkert J, Wolf S, Schmitz-Hubsch T, Rakowicz M, Mariotti C, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010;49(1):158–68 (erratum appears in Neuroimage. 2010;50(4):1712) (Research support, non-US Government).

  25. Adachi M, Kawanami T, Ohshima H, Hosoya T. Characteristic signal changes in the pontine base on T2- and multishot diffusion-weighted images in spinocerebellar ataxia type 1. Neuroradiology. 2006;48(1):8–13.

    Article  PubMed  CAS  Google Scholar 

  26. Adachi M, Hosoya T, Yamaguchi K, Kawanami T, Kato T. Diffusion-and T2-weighted MRI of the transverse pontine fibres in spinocerebellar degeneration. Neuroradiology. 2000;42:803–9.

    Article  PubMed  CAS  Google Scholar 

  27. Mascalchi M, Tosetti M, Plasmati R, Bianchi MC, Tessa C, Salvi F, et al. Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Annal Neurol. 1998;43(2):244–52. Clinical trial controlled clinical trial research support, Non-US Government.

    Article  PubMed  CAS  Google Scholar 

  28. Guerrini L, Lolli F, Ginestroni A, Belli G, Della Nave R, Tessa C, et al. Brainstem neurodegeneration correlates with clinical dysfunction in SCA1 but not in SCA2. A quantitative volumetric, diffusion and proton spectroscopy MR study. Brain. 2004;127(Pt 8):1785–95. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  29. Oz G, Hutter D, Tkac I, Clark HB, Gross MD, Jiang H, et al. Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord. 2010;25(9):1253–61. Research support, NIH, Extramural research support, non-US Government.

    Article  PubMed  Google Scholar 

  30. Oz G, Nelson CD, Koski DM, Henry P-G, Marjanska M, Deelchand DK, et al. Noninvasive detection of presymptomatic and progressive neurodegeneration in a mouse model of spinocerebellar ataxia type 1. J Neurosci. 2010;30(10):3831–8. Comparative study research support, NIH, Extramural research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  31. Jayakumar P, Desai S, Pal P, Balivada S, Ellika S, Kalladka D. Functional correlates of incoordination in patients with spinocerebellar ataxia 1: a preliminary fMRI study. J Clin Neurosci. 2008;15:269–77.

    Article  PubMed  Google Scholar 

  32. Giuffrida S, Saponara R, Restivo DA, Trovato SA, Tomarchio L, Pugliares P, et al. Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J Neurol. 1999;246(5):383–8.

    Article  PubMed  CAS  Google Scholar 

  33. Ueyama H, Kumamoto T, Nagao S, Mita S, Uchino M, Tsuda T. Clinical and genetic studies of spinocerebellar ataxia type 2 in Japanese kindreds. Acta Neurol Scand. 1998;98(6):427–32.

    Article  PubMed  CAS  Google Scholar 

  34. Yamanouchi N, Okada S, Kodama K. White matter changes caused by chronic solvent abuse. AJNR Am J Neuroradiol. 1995;16:1643–9.

    PubMed  CAS  Google Scholar 

  35. Chakravarty A, Mukherjee S. Autosomal dominant cerebellar ataxias in ethnic Bengalees in West Bengal—an Eastern Indian state. Acta Neurol Scand. 2002;105:202–8.

    Article  PubMed  CAS  Google Scholar 

  36. Klockgether T, Skalej M, Wedekind D, Luft AR, Welte D, Schulz JB, et al. Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain. 1998;121(Pt 9):1687–93.

    Article  PubMed  Google Scholar 

  37. Mandelli ML, De Simone T, Minati L, Bruzzone MG, Mariotti C, Fancellu R, et al. Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. AJNR Am J Neuroradiol. 2007;28(10):1996–2000. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  38. Della Nave R, Ginestroni A, Tessa C, Cosottini M, Giannelli M, Salvatore E, et al. Brain structural damage in spinocerebellar ataxia type 2. A voxel-based morphometry study. Mov Disord. 2008;23(6):899–903. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  39. Ying SH, Choi SI, Perlman SL, Baloh RW, Zee DS, Toga AW. Pontine and cerebellar atrophy correlate with clinical disability in SCA2. Neurology. 2006;66(3):424–6. Research support, NIH, Extramural research support, non-US Governmentt.

    Article  PubMed  CAS  Google Scholar 

  40. Brenneis C, Bosch SM, Schocke M, Wenning GK, Poewe W. Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport. 2003;14(14):1799–802. Comparative Study.

    Article  PubMed  Google Scholar 

  41. Lee YC, Liu CS, Wu HM, Wang PS, Chang MH, Soong BW. The ‘hot cross bun’ sign in the patients with spinocerebellar ataxia. Eur J Neurol. 2009;16(4):513–6.

    Article  PubMed  Google Scholar 

  42. Boesch SM, Wolf C, Seppi K, Felber S, Wenning GK, Schocke M. Differentiation of SCA2 from MSA-C using proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging. 2007;25(3):564–9. Comparative Study Controlled Clinical Trial.

    Article  PubMed  Google Scholar 

  43. Boesch SM, Schocke M, Burk K, Hollosi P, Fornai F, Aichner FT, et al. Proton magnetic resonance spectroscopic imaging reveals differences in spinocerebellar ataxia types 2 and 6. J Magn Reson Imaging. 2001;13(4):553–9.

    Article  PubMed  CAS  Google Scholar 

  44. Oz G, Iltis I, Hutter D, Thomas W, Bushara KO, Gomez CM. Distinct neurochemical profiles of spinocerebellar ataxias 1, 2, 6, and cerebellar multiple system atrophy. Cerebellum. 2011;10(2):208–17. Research support, NIH, Extramural research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  45. Lukas C, Schols L, Bellenberg B, Rub U, Przuntek H, Schmid G, et al. Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett. 2006;408(3):230–5. Comparative study research support, Non-US Government.

    Article  PubMed  CAS  Google Scholar 

  46. Murata Y, Yamaguchi S, Kawakami H, Imon Y, Maruyama H, Sakai T, et al. Characteristic magnetic resonance imaging findings in Machado–Joseph disease. Arch Neurol. 1998;55:33–7.

    Article  PubMed  CAS  Google Scholar 

  47. Rosenberg R, Nyhan W, Bay C, Shore P. Autosomal dominant striatonigral degeneration. A clinical, pathologic, and biochemical study of a new genetic disorder. Neurology. 1976;26:703–14.

    Article  PubMed  CAS  Google Scholar 

  48. Lukas C, Hahn HK, Bellenberg B, Hellwig K, Globas C, Schimrigk SK, et al. Spinal cord atrophy in spinocerebellar ataxia type 3 and 6: impact on clinical disability. J Neurol. 2008;255(8):1244–9. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  49. Butteriss D, Chinnery P, Birchall D. Radiological characterization of spinocerebellar ataxia type 6. Br J Radiol. 2005;78(932):694–6.

    Article  PubMed  CAS  Google Scholar 

  50. Satoh JI, Tokumoto H, Yukitake M, Matsui M, Matsuyama Z, Kawakami H, et al. Spinocerebellar ataxia type 6: MRI of three Japanese patients. Neuroradiology. 1998;40(4):222–7.

    Article  PubMed  CAS  Google Scholar 

  51. Stevanin G, Durr A, David G, Didierjean O, Cancel G, Rivaud S, et al. Clinical and molecular features of spinocerebellar ataxia type 6. Neurology. 1997;49(5):1243–6. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  52. Sethi KD, Jankovic J. Dystonia in spinocerebellar ataxia type 6. Mov Disord. 2002;17(1):150–3. Case Reports.

    Article  PubMed  Google Scholar 

  53. Ishikawa K, Watanabe M, Yoshizawa K, Fujita T, Iwamoto H, Yoshizawa T, et al. Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatr. 1999;67:86–9.

    Article  PubMed  CAS  Google Scholar 

  54. Nagai Y, Azuma T, Funauchi M, Fujita M, Umi M, Hirano M, et al. Clinical and molecular genetic study in seven Japanese families with spinocerebellar ataxia type 6. J Neurol Sci. 1998;157(1):52–9. Case Reports.

    Article  PubMed  CAS  Google Scholar 

  55. Murata Y, Kawakami H, Yamaguchi S, Nishimura M, Kohriyama T, Ishizaki F, et al. Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Arch Neurol. 1998;55(10):1348–52. Comparative study research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  56. Ying S, Landman B, Chowdhury S, Sinofsky A, Gambini A, Mori S, et al. Orthogonal diffusion-weighted MRI measures distinguish region-specfic degeneration in cerebellar ataxia subtypes. J Neurol. 2009;256:1939–42.

    Article  PubMed  Google Scholar 

  57. Damak M, Riant F, Boukobza M, Tournier-Lasserve E, Bousser M-G, Vahedi K. Late onset hereditary episodic ataxia. J Neurol Neurosurg Psychiatr. 2009;80:566–9.

    Article  PubMed  CAS  Google Scholar 

  58. Harno H, Heikkinen S, Kaunisto MA, Kallela M, Hakkinen AM, Wessman M, et al. Decreased cerebellar total creatine in episodic ataxia type 2: a 1H MRS study. Neurology. 2005;64(3):542–4. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  59. Sappey-Marinier D, Vighetto A, Peyron R, Broussolle E, Bonmartin A. Phosphorus and proton magnetic resonance spectroscopy in episodic ataxia type 2. Annal Neurol. 1999;46(2):256–9.

    Article  PubMed  CAS  Google Scholar 

  60. Bhidayasiri R, Perlman SL, Pulst SM, Geschwind DH. Late-onset Friedreich ataxia: phenotypic analysis, magnetic resonance imaging findings, and review of the literature. Arch Neurol. 2005;62(12):1865–9. Comparative study research support, NIH, Extramural research support, non-US Government research support, US Government, Non-PHS.

    Article  PubMed  Google Scholar 

  61. De Michele G, Di Salle F, Filla A, D’Alessio G, Ambrosio G, Viscardi L, et al. Magnetic resonance imaging in “typical” and “late onset” Friedreich’s disease and early onset cerebellar ataxia with retained tendon reflexes. Ital J Neurol Sci. 1995;16(5):303–8. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  62. Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Annal Neurol. 1999;46(1):123–5.

    Article  PubMed  CAS  Google Scholar 

  63. Anheim M, Fleury M, Monga B, Laugel V, Chaigne D, Rodier G, et al. Epidemiological, clinical, paraclinical and molecular study of a cohort of 102 patients affected with autosomal recessive progressive cerebellar ataxia from Alsace, Eastern France: implications for clinical management. Neurogenetics. 2010;11(1):1–12. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  64. Della Nave R, Ginestroni A, Giannelli M, Tessa C, Salvatore E, Salvi F, et al. Brain structural damage in Friedreich’s ataxia. J Neurol Neurosurg Psychiatry. 2008;79(1):82–5. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  65. Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M. Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology. 2011;53(5):367–72.

    Article  PubMed  Google Scholar 

  66. Akhlaghi H, Corben L, Georgiou-Karistianis N, Bradshaw J, Storey E, Delatycki MB, et al. Superior cerebellar peduncle atrophy in Friedreich’s ataxia correlates with disease symptoms. Cerebellum. 2011;10(1):81–7. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  67. Wessel K, Schroth G, Diener HC, Muller-Forell W, Dichgans J. Significance of MRI-confirmed atrophy of the cranial spinal cord in Friedreich's ataxia. Eur Arch Psychiatry Neurol Sci. 1989;238(4):225–30.

    Google Scholar 

  68. Franca Jr MC, D’Abreu A, Yasuda CL, Bonadia LC, Santos da Silva M, Nucci A, et al. A combined voxel-based morphometry and 1H-MRS study in patients with Friedreich’s ataxia. J Neurol. 2009;256(7):1114–20. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  69. Iltis I, Hutter D, Bushara KO, Clark HB, Gross M, Eberly LE, et al. (1)H MR spectroscopy in Friedreich’s ataxia and ataxia with oculomotor apraxia type 2. Brain Res. 2010;1358:200–10. Research support, NIH, Extramural.

    Article  PubMed  CAS  Google Scholar 

  70. Fortuna F, Barboni P, Liguori R, Valentino ML, Savini G, Gellera C, et al. Visual system involvement in patients with Friedreich’s ataxia. Brain J Neurol. 2009;132(Pt 1):116–23. Research support, non-US Government.

    Google Scholar 

  71. Rizzo G, Tonon C, Valentino ML, Manners D, Fortuna F, Gellera C, et al. Brain diffusion-weighted imaging in Friedreich’s ataxia. Mov Disord. 2011;26(4):705–12.

    Article  PubMed  Google Scholar 

  72. Ciemins JJ, Horowitz AL. Abnormal white matter signal in ataxia telangiectasia. AJNR Am J Neuroradiol. 2000;21(8):1483–5. Case Reports.

    PubMed  CAS  Google Scholar 

  73. Sardanelli F, Parodi RC, Ottonello C, Renzetti P, Saitta S, Lignana E, et al. Cranial MRI in ataxia-telangiectasia. Neuroradiology. 1995;37(1):77–82.

    Article  PubMed  CAS  Google Scholar 

  74. Tavani F, Zimmerman RA, Berry GT, Sullivan K, Gatti R, Bingham P. Ataxia-telangiectasia: the pattern of cerebellar atrophy on MRI. Neuroradiology. 2003;45(5):315–9.

    PubMed  CAS  Google Scholar 

  75. Wallis LI, Griffiths PD, Ritchie SJ, Romanowski CAJ, Darwent G, Wilkinson ID. Proton spectroscopy and imaging at 3T in ataxia-telangiectasia. AJNR Am J Neuroradiol. 2007;28(1):79–83. Research support, non-US Government.

    PubMed  CAS  Google Scholar 

  76. Habek M, Brinar VV, Rados M, Zadro I, Zarkovic K. Brain MRI abnormalities in ataxia-telangiectasia. Neurologist. 2008;14(3):192–5. Case Reports.

    Article  PubMed  Google Scholar 

  77. Le Ber I, Moreira M-C, Rivaud-Pechoux S, Chamayou C, Ochsner F, Kuntzer T, et al. Cerebellar ataxia with oculomotor apraxia type 1: clinical and genetic studies. Brain. 2003;126(Pt 12):2761–72. Case reports research support, non-US Government.

    Article  PubMed  Google Scholar 

  78. Sekijima H, Ohara S, Nakagawa S, Tabata K, Yoshida K, Ishigame H. Hereditary motor and sensory neuropathy associated with cerebellar atrophy (HMSNCA): clinical and neuropathological features of a Japanese family. J Neurol Sci. 1998;158:30–7.

    Article  PubMed  CAS  Google Scholar 

  79. Anheim M, Monga B, Fleury M, Charles P, Barbot C, Salih M, et al. Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain J Neurol. 2009;132(Pt 10):2688–98. Research support, non-US Government.

    Article  CAS  Google Scholar 

  80. Criscuolo C, Chessa L, Di Giandomenico S, Mancini P, Sacca F, Grieco GS, et al. Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study. Neurology. 2006;66(8):1207–10. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  81. Iltis I, Hutter D, Bushara KO, Clark HB, Gross M, Eberly LE, et al. (1)H MR spectroscopy in Friedreich's ataxia and ataxia with oculomotor apraxia type 2. Brain Res. 2010;1358:200–10 (Research support, NIH, Extramural).

    Google Scholar 

  82. Embirucu EK, Otaduy MC, Taneja AK, Leite CC, Kok F, Lucato LT. MR spectroscopy detects lipid peaks in cerebrotendinous xanthomatosis. AJNR Am J Neuroradiol. 2010;31(7):1347–9. Case Reports.

    Article  PubMed  CAS  Google Scholar 

  83. Pilo de la Fuente B, Ruiz I, Lopez de Munain A, Jimenez-Escrig A. Cerebrotendinous xanthomatosis: neuropathological findings. J Neurol. 2008;255(6):839–42. Case Reports.

    Article  PubMed  CAS  Google Scholar 

  84. Sevin M, Lesca G, Baumann N, Millat G, Lyon-Caen O, Vanier MT, et al. The adult form of Niemann–Pick disease type C. Brain J Neurol. 2007;130(Pt 1):120–33. Case reports research support, non-US Government review.

    Google Scholar 

  85. Tedeschi G, Bonavita S, Barton NW, Betolino A, Frank JA, Patronas NJ, et al. Proton magnetic resonance spectroscopic imaging in the clinical evaluation of patients with Niemann-Pick type C disease. J Neurol Neurosurg Psychiatry. 1998;65(1):72–9.

    Article  PubMed  CAS  Google Scholar 

  86. Battisti C, Tarugi P, Dotti MT, De Stefano N, Vattimo A, Chierichetti F, et al. Adult onset Niemann-Pick type C disease: A clinical, neuroimaging and molecular genetic study. Mov Disord. 2003;18(11):1405–9. Case reports research support, non-US Government.

    Article  PubMed  Google Scholar 

  87. Rapin I, Weidenheim K, Lindenbaum Y, Rosenbaum P, Merchant SN, Krishna S, et al. Cockayne syndrome in adults: review with clinical and pathologic study of a new case. J Child Neurol. 2006;21(11):991–1006. Case Reports Review.

    Article  PubMed  Google Scholar 

  88. Adachi M, Kawanami T, Ohshima F, Hosoya T. MR findings of cerebral white matter in Cockayne syndrome. Magn Reson Med Sci. 2006;5(1):41–5. Case Reports.

    Article  PubMed  Google Scholar 

  89. Weidenheim KM, Dickson DW, Rapin I. Neuropathology of Cockayne syndrome: evidence for impaired development, premature aging, and neurodegeneration. Mech Ageing Dev. 2009;130(9):619–36. Case Reports Review.

    Article  PubMed  CAS  Google Scholar 

  90. Cheon JE, Kim IO, Hwang YS, Kim KJ, Wang KC, Cho BK, et al. Leukodystrophy in children: a pictorial review of MR imaging features. Radiographics. 2002;22(3):461–76. Review.

    PubMed  Google Scholar 

  91. Hund E, Grau A, Fogel W, Forsting M, Cantz M, Kustermann-Kuhn B, et al. Progressive cerebellar ataxia, proximal neurogenic weakness and ocular motor disturbances: hexosaminidase A deficiency with late clinical onset in four siblings. J Neurol Sci. 1997;145(1):25–31. Case Reports.

    Article  PubMed  CAS  Google Scholar 

  92. Seminara SB, Acierno Jr JS, Abdulwahid NA, Crowley Jr WF, Margolin DH. Hypogonadotropic hypogonadism and cerebellar ataxia: detailed phenotypic characterization of a large, extended kindred. J Clin Endocrinol Metab. 2002;87(4):1607–12. Case reports research support, US Government, PHS.

    Article  PubMed  CAS  Google Scholar 

  93. Harding AE. “Idiopathic” late onset cerebellar ataxia. A clinical and genetic study of 36 cases. J Neurol Sci. 1981;51(2):259–71. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  94. Fok AC, Wong MC, Cheah JS. Syndrome of cerebellar ataxia and hypogonadotrophic hypogonadism: evidence for pituitary gonadotrophin deficiency. J Neurol Neurosurg Psychiatry. 1989;52(3):407–9. Case Reports.

    Article  PubMed  CAS  Google Scholar 

  95. Ito S, Shirai W, Asahina M, Hattori T. Clinical and brain MR imaging features focusing on the brain stem and cerebellum in patients with myoclonic epilepsy with ragged-red fibers due to mitochondrial A8344G mutation. AJNR Am J Neuroradiol. 2008;29(2):392–5. Case Reports.

    Article  PubMed  CAS  Google Scholar 

  96. Mathews PM, Andermann F, Silver K, Karpati G, Arnold DL. Proton MR spectroscopic characterization of differences in regional brain metabolic abnormalities in mitochondrial encephalomyopathies. Neurology. 1993;43(12):2484–90. Research support, non-US Government, research support, US Government, PHS.

    Article  PubMed  CAS  Google Scholar 

  97. Takeda S, Wakabayashi K, Ohama E, Ikuta F. Neuropathology of myoclonus epilepsy associated with ragged-red fibers (Fukuhara’s disease). Acta Neuropathol. 1988;75(5):433–40. Case reports research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  98. Herrero-Martin MD, Ayuso T, Tunon MT, Martin MA, Ruiz-Pesini E, Montoya J. A MELAS/MERRF phenotype associated with the mitochondrial DNA 5521G > A mutation. J Neurol Neurosurg Psychiatry. 2010;81(4):471–2. Case Reports Letter.

    Article  PubMed  Google Scholar 

  99. Lodi R, Montagna P, Iotti S, Zaniol P, Barboni P, Puddu P, et al. Brain and muscle energy metabolism studied in vivo by 31P-magnetic resonance spectroscopy in NARP syndrome. J Neurol Neurosurg Psychiatr. 1994;57(12):1492–6 (Case reports clinical trial research support, non-US Government).

    Google Scholar 

  100. Tzoulis C, Neckelmann G, Mork SJ, Engelsen BE, Viscomi C, Moen G, et al. Localized cerebral energy failure in DNA polymerase gamma-associated encephalopathy syndromes. Brain J Neurol. 2010;133(Pt 5):1428–37. Comparative study research support, non-US Government.

    Article  Google Scholar 

  101. Hashimoto R-I, Javan AK, Tassone F, Hagerman RJ, Rivera SM. A voxel-based morphometry study of grey matter loss in fragile X-associated tremor/ataxia syndrome. Brain. 2011;134(Pt 3):863–78. Research support, NIH, Extramural research support, non-US Government.

    Article  PubMed  Google Scholar 

  102. Brunberg JA, Jacquemont S, Hagerman RJ, Berry-Kravis EM, Grigsby J, Leehey MA, et al. Fragile X premutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR Am J Neuroradiol. 2002;23(10):1757–66. Comparative study evaluation studies research support, non-US Government, research support, US Government, PHS.

    PubMed  Google Scholar 

  103. Ginestroni A, Guerrini L, Della Nave R, Tessa C, Cellini E, Dotti MT, et al. Morphometry and 1H-MR spectroscopy of the brain stem and cerebellum in three patients with fragile X-associated tremor/ataxia syndrome. AJNR Am J Neuroradiol. 2007;28(3):486–8. Case reports research support, non-US Government.

    PubMed  CAS  Google Scholar 

  104. Sarac H, Henigsberg N, Markeljevic J, Pavlisa G, Hof PR, Simic G. Fragile X-premutation tremor/ataxia syndrome (FXTAS) in a young woman: clinical, genetics, MRI and 1H-MR spectroscopy correlates. Collegium Antropologicum. 2011;35 Suppl 1:327–32. Case Reports.

    PubMed  CAS  Google Scholar 

  105. Klockgether T. Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurol. 2010;9:94–104.

    Article  PubMed  CAS  Google Scholar 

  106. Chu K, Kang DW, Kim HJ, Lee YS, Park SH. Diffusion-weighted imaging abnormalities in wernicke encephalopathy: reversible cytotoxic edema? Arch Neurol. 2002;59(1):123–7. Case reports research support, non-US Government.

    Article  PubMed  Google Scholar 

  107. Yokota O, Tsuchiya K, Terada S, Oshima K, Ishizu H, Matsushita M, et al. Frequency and clinicopathological characteristics of alcoholic cerebellar degeneration in Japan: a cross-sectional study of 1,509 postmortems. Acta Neuropathol. 2006;112(1):43–51. Comparative study research support, non-US Government.

    Article  PubMed  Google Scholar 

  108. Hillbom M, Muuronen A, Holm L, Hindmarsh T. The clinical versus radiological diagnosis of alcoholic cerebellar degeneration. J Neurol Sci. 1986;73(1):45–53. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  109. Anderson CM, Rabi K, Lukas SE, Teicher MH. Cerebellar lingula size and experiential risk factors associated with high levels of alcohol and drug use in young adults. Cerebellum. 2010;9(2):198–209. Research support, NIH, Extramural.

    Article  PubMed  Google Scholar 

  110. Maschke M, Weber J, Bonnet U, Dimitrova A, Bohrenkamper J, Sturm S, et al. Vermal atrophy of alcoholics correlate with serum thiamine levels but not with dentate iron concentrations as estimated by MRI. J Neurol 2005;252(6):704–11 (comparative study research support, non-US Government)

    Google Scholar 

  111. Hommer D, Momenan R, Kaiser E, Rawlings R. Evidence for a gender-related effect of alcoholism on brain volumes. Am J Psychiatry. 2001;158(2):198–204. Research support, US Government, PHS.

    Article  PubMed  CAS  Google Scholar 

  112. Bartsch AJ, Homola G, Biller A, Smith SM, Weijers HG, Wiesbeck GA, et al. Manifestations of early brain recovery associated with abstinence from alcoholism. Brain J Neurol. 2007;130(Pt 1):36–47.

    Google Scholar 

  113. Adalsteinsson E, Sullivan EV, Mayer D, Pfefferbaum A. In vivo quantification of ethanol kinetics in rat brain. Neuropsychopharmacol. 2006;31(12):2683–91. Research support, NIH, Extramural].

    Article  CAS  Google Scholar 

  114. Papp MI, Kahn JE, Lantos PL. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci. 1989;94(1–3):79–100.

    Article  PubMed  CAS  Google Scholar 

  115. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71(9):670–6. Consensus Development Conference research support, NIH, Extramural research support, Non-US Government.

    Article  PubMed  CAS  Google Scholar 

  116. Brenneis C, Boesch S, Egger K, Seppi K, Scherfler C, Schocke M, et al. Cortical atrophy in the cerebellar variant of multiple atrophy: a voxel based morphometry study. Mov Disord. 2006;21(2):159–65.

    Article  PubMed  Google Scholar 

  117. Nanri K, Koizumi K, Mitoma H, Taguchi T, Takeguchi M, Ishiko T, et al. Classification of cerebellar atrophy using voxel-based morphometry and SPECT with an easy Z-score imaging system. Intern Med. 2010;49(6):535–41. Evaluation Studies.

    Article  PubMed  Google Scholar 

  118. Brenneis C, Seppi K, Schocke MF, Muller J, Luginger E, Bosch S, et al. Voxel-based morphometry detects cortical atrophy in the Parkinson variant of multiple system atrophy. Mov Disord. 2003;18(10):1132–8. Comparative Study.

    Article  PubMed  Google Scholar 

  119. Burk K, Globas C, Wahl T, Buhring U, Dietz K, Zuhlke C, et al. MRI-based volumetric differentiation of sporadic cerebellar ataxia. Brain J Neurol. 2004;127(Pt 1):175–81.

    Article  CAS  Google Scholar 

  120. Watanabe H, Fukatsu H, Katsuno M, Sugiura M, Hamada K, Okada Y, et al. Multiple regional 1H-MR spectroscopy in multiple system atrophy: NAA/Cr reduction in pontine base as a valuable diagnostic marker. J Neurol Neurosurg Psychiatry. 2004;75(1):103–9. Clinical Trial.

    PubMed  CAS  Google Scholar 

  121. da Rocha AJ, Maia Jr AC, da Silva CJ, Braga FT, Ferreira NP, Barsottini OG, et al. Pyramidal tract degeneration in multiple system atrophy: the relevance of magnetization transfer imaging. Mov Disord. 2007;22(2):238–44.

    Article  PubMed  Google Scholar 

  122. Kitamura K, Nakayama K, Kosaka S, Yamada E, Shimada H, Miki T, et al. Diffusion tensor imaging of the cortico-ponto-cerebellar pathway in patients with adult-onset ataxic neurodegenerative disease. Neuroradiology. 2008;50(4):285–92. Controlled Clinical Trial.

    Article  PubMed  Google Scholar 

  123. Blain CR, Barker GJ, Jarosz JM, Coyle NA, Landau S, Brown RG, et al. Measuring brain stem and cerebellar damage in parkinsonian syndromes using diffusion tensor MRI. Neurology. 2006;67(12):2199–205. Comparative study research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  124. Shiga K, Yamada K, Yoshikawa K, Mizuno T, Nishimura T, Nakagawa M. Local tissue anisotropy decreases in cerebellopetal fibers and pyramidal tract in multiple system atrophy. J Neurol. 2005;252(5):589–96. Comparative study research support, non-US Government.

    Article  PubMed  Google Scholar 

  125. De Marcos FA, Ghizoni E, Kobayashi E, Li LM, Cendes F. Cerebellar volume and long-term use of phenytoin. Seizure J Br Epilepsy Assoc. 2003;12(5):312–5. Comparative study research support, non-US Government.

    Article  Google Scholar 

  126. Braun J, Seyfert S, Bernarding J, Schilling A, Marx P, Tolxdorff T. Volume-selective proton MR spectroscopy for in-vitro quantification of anticonvulsants. Neuroradiology. 2001;43:211–7.

    Article  PubMed  CAS  Google Scholar 

  127. Uchino A, Aibe H, Itoh H, Aiko Y, Tanaka M. Superficial siderosis of the central nervous system. Its MRI manifestations. Clin Imaging. 1997;21:241–5.

    Article  PubMed  CAS  Google Scholar 

  128. Rees JH. Paraneoplastic cerebellar degeneration: new insights into imaging and immunology. J Neurol Neurosurg Psychiatry. 2006;77(4):427. Comment Editorial.

    Article  PubMed  CAS  Google Scholar 

  129. Wilkinson I, Hadjivassiliou M, Dickson J, Wallis L, Grunewald R, Coley S, et al. Cerebellar abnormalities on proton MR spectroscopy in gluten ataxia. J Neurol Neurosurg Psychiatry. 2005;76:1011–3.

    Article  PubMed  CAS  Google Scholar 

  130. Maheshwari S, Fatterpekar G, Castillo M, Mukherji S. Proton MR spectroscopy of the brain. Semin Ultrasound CT MR. 2000;21:434–51.

    Article  PubMed  CAS  Google Scholar 

  131. Wolinsky J, Narayana P. Magnetic resonance spectroscopy in multiple sclerosis: window into the diseased brain. Curr Opin Neurol. 2002;15:247–51.

    Article  PubMed  Google Scholar 

  132. Gilmore CP, Elliott I, Auer D, Maddison P. Diffuse cerebellar MR imaging changes in anti-Yo positive paraneoplastic cerebellar degeneration. J Neurol. 2010;257(3):490–1. Case Reports Letter].

    Article  PubMed  Google Scholar 

  133. Marsh M. The natural history of gluten sensitivity: defining, refining and re-defining. Q J Med. 1995;85:9–13.

    Google Scholar 

  134. Hadjivassiliou M, Sanders D, Grunewald R, Woodroofe N, Boscolo S, Aeschlimann D. Gluten sensitivity: from gut to brain. Lancet Neurol. 2010;9:318–30.

    Article  PubMed  CAS  Google Scholar 

  135. Burk K, Bosch S, Muller CA, Melms A, Zuhlke C, Stern M, et al. Sporadic cerebellar ataxia associated with gluten sensitivity. Brain J Neurol. 2001;124(Pt 5):1013–9. Review.

    Article  CAS  Google Scholar 

  136. Hadjivassiliou M, Wallis LI, Hoggard N, Grunewald RA, Griffiths PD, Wilkinson ID. MR spectroscopy and atrophy in Gluten, Friedreich’s and SCA6 ataxias. Acta Neurol Scand. 2012;126:138–43.

    Google Scholar 

  137. De Bruecker Y, Claus F, Demaerel P, Ballaux F, Sciot R, Lagae L, et al. MRI findings in acute cerebellitis. Eur Radiol. 2004;18(8):1478–83.

    Google Scholar 

  138. Hadjivassiliou M, Boscolo S, Tongiorgi E, Grunewald RA, Sharrack B, Sanders DS, et al. Cerebellar ataxia as a possible organ-specific autoimmune disease. Mov Disord. 2008;23(10):1370–7.

    Article  PubMed  Google Scholar 

  139. Honnorat J, Saiz A, Giometto B, Vincent A, Brieva L, de Andres C, et al. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol. 2001;58(2):225–30. Clinical trial research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  140. Ashburner J, Friston KJ. Why voxel-based morphometry should be used. Neuroimage. 2001;14(6):1238–43. Comment research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  141. Ewers M, Teipel SJ, Dietrich O, Schonberg SO, Jessen F, Heun R, et al. Multicenter assessment of reliability of cranial MRI. Neurobiol Aging. 2006;27(8):1051–9. Multicenter study research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  142. Pardoe H, Pell GS, Abbott DF, Berg AT, Jackson GD. Multi-site voxel-based morphometry: methods and a feasibility demonstration with childhood absence epilepsy. Neuroimage. 2008;42(2):611–6. Multicenter study research support, NIH, Extramural research support, Non-US Government.

    Article  PubMed  Google Scholar 

  143. Stevanin G, Herman A, Brice A, Durr A. Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology. 1999;53(6):1355–7. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  144. Kreuz FR, Grunewald T, Muller A, Reichmann H, Zuhlke C. Spinocerebellar ataxia type 7: frequency of CAG repeat length in a German family. J Neurol. 1999;246(11):1105–6. doi:11. Case Reports Letter.

    Article  PubMed  CAS  Google Scholar 

  145. Jobsis G, Weber J, Barth P, Keizers H, Baas F, van Schooneveld M, et al. Autosomal dominant cerebellar ataxia with retinal degeneration (ADCA II): clinical and neuropathological findings in two pedegrees and genetic linkage to 3p12-p21.1. Journal of Neurology Neurosurgery and. Psychiatry. 1997;62:367–71.

    CAS  Google Scholar 

  146. Bang OY, Lee PH, Kim SY, Kim HJ, Huh K. Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry. 2004;75(10):1452–6.

    Article  PubMed  CAS  Google Scholar 

  147. Alcauter S, Barrios FA, Diaz R, Fernandez-Ruiz J. Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. Neuroimage. 2011;55(1):1–7 (Research support, non-US Government).

    Google Scholar 

  148. Day JW, Schut LJ, Moseley ML, Durand AC, Ranum LP. Spinocerebellar ataxia type 8: clinical features in a large family. Neurology. 2000;55(5):649–57. Research support, non-US Government research support, US Government, PHS.

    Article  PubMed  CAS  Google Scholar 

  149. Ikeda Y, Shizuka-Ikeda M, Watanabe M, Schmitt M, Okamoto K, Shoji M. Asymptomatic CTG expansion at the SCA8 locus is associated with cerebellar atrophy on MRI. J Neurol Sci. 2000;182(1):76–9. Case Reports.

    Article  PubMed  CAS  Google Scholar 

  150. Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M. Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology. 2000;54(4):950–5.

    Article  PubMed  CAS  Google Scholar 

  151. Torrens L, Burns E, Stone J, Graham C, Wright H, Summers D, et al. Spinocerebellar ataxia type 8 in Scotland: frequency, neurological, neuropsychological and neuropsychiatric findings. Acta Neurol Scand. 2008;117(1):41–8. Research support, non-US Government.

    Article  PubMed  CAS  Google Scholar 

  152. Kumar N, Miller GM. White matter hyperintense lesions in genetically proven spinocerebellar ataxia 8. Clin Neurol Neurosurg. 2008;110(1):65–8. Case Reports.

    Article  PubMed  Google Scholar 

  153. Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Annal Neurol. 2001;50(2):234–9. Research support, non-US Government research support, US Government, PHS.

    Article  PubMed  CAS  Google Scholar 

  154. Grewal RP, Achari M, Matsuura T, Durazo A, Tayag E, Zu L, et al. Clinical features and ATTCT repeat expansion in spinocerebellar ataxia type 10. Arch Neurol. 2002;59(8):1285–90. Research support, non-US Government research support, US Government, PHS.

    Article  PubMed  Google Scholar 

  155. Srivastava A, Choudhry S, Gopinath M, Roy S, Tripathi M, Brahmachari S, et al. Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Annal Neurol. 2001;50:796–800.

    Article  PubMed  CAS  Google Scholar 

  156. Brussino A, Graziano C, Giobbe D, Ferrone M, Dragone E, Arduino C, et al. Spinocerebellar ataxia type 12 identified in two Italian families may mimic sporadic ataxia. Mov Disord. 2010;25(9):1269–73. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  157. van de Warrenburg BPC, Verbeek DS, Piersma SJ, Hennekam FAM, Pearson PL, Knoers NVAM, et al. Identification of a novel SCA14 mutation in a Dutch autosomal dominant cerebellar ataxia family. Neurology. 2003;61(12):1760–5. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  158. Novak MJU, Sweeney MG, Li A, Treacy C, Chandrashekar HS, Giunti P, et al. An ITPR1 gene deletion causes spinocerebellar ataxia 15/16: a genetic, clinical and radiological description. Mov Disord. 2010;25(13):2176–82. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  159. Miyoshi Y, Yamada T, Tanimura M, Taniwaki T, Arakawa K, Ohyagi Y, et al. A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology. 2001;57(1):96–100. Case Reports.

    Article  PubMed  CAS  Google Scholar 

  160. Kanai K, Sakakibara R, Uchiyama T, Liu Z, Yamamoto T, Ito T, et al. Sporadic case of spinocerebellar ataxia type 17: treatment observations for managing urinary and psychotic symptoms. Mov Disord. 2007;22(3):441–3. Letter research support, non-US Government.

    Article  PubMed  Google Scholar 

  161. Loy CT, Sweeney MG, Davis MB, Wills AJ, Sawle GV, Lees AJ, et al. Spinocerebellar ataxia type 17: extension of phenotype with putaminal rim hyperintensity on magnetic resonance imaging. Mov Disord. 2005;20(11):1521–3. Case Reports.

    Article  PubMed  Google Scholar 

  162. Watanabe M, Monai N, Jackson M, Yamamoto-Watanabe Y, Ikeda Y, Suzuki C, et al. A small trinucleotide expansion in the TBP gene gives rise to a sporadic case of SCA17 with abnormal putaminal findings on MRI. Intern Med. 2008;47:2179–82.

    Article  PubMed  Google Scholar 

  163. De Michele G, Maltecca F, Carella M, Volpe G, Orio M, De Falco A, et al. Dementia, ataxia, extrapyramidal features, and epilepsy: phenotype spectrum in two Italian families with spinocerebellar ataxia type 17. Neurol Sci. 2003;24(3):166–7. Comparative Study.

    Article  PubMed  Google Scholar 

  164. Mariotti C, Alpini D, Fancellu R, Soliveri P, Grisoli M, Ravaglia S, et al. Spinocerebellar ataxia type 17 (SCA17): oculomotor phenotype and clinical characterization of 15 Italian patients. J Neurol. 2007;254(11):1538–46. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  165. Reetz K, Lencer R, Hagenah JM, Gaser C, Tadic V, Walter U, et al. Structural changes associated with progression of motor deficits in spinocerebellar ataxia 17. Cerebellum. 2010;9(2):210–7. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  166. Rolfs A, Koeppen AH, Bauer I, Bauer P, Buhlmann S, Topka H, et al. Clinical features and neuropathology of autosomal dominant spinocerebellar ataxia (SCA17). Annal Neurol. 2003;54(3):367–75. Research support, non-US Government research support, US Government, Non-PHS.

    Article  PubMed  Google Scholar 

  167. Reetz K, Kleiman A, Klein C, Lencer R, Zuehlke C, Brockmann K, et al. CAG repeats determine brain atrophy in spinocerebellar ataxia 17: a VBM study. PLoS ONE 2011;6(1):e15125 [erratum appears in PLoS One. 2011;6(1). doi: 10.1371/annotation/e30b739b-114e-445a-b07b-7e2a8efa2668] (Research support, non-US Government].

  168. Knight MA, Gardner RJM, Bahlo M, Matsuura T, Dixon JA, Forrest SM, et al. Dominantly inherited ataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain. 2004;127(Pt 5):1172–81. Research support, non-US Government.

    Article  PubMed  Google Scholar 

  169. Chung M-Y, Lu Y-C, Cheng N-C, Soong B-W. A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain. 2003;126(Pt 6):1293–9. Research support, non-US Government.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interests

All authors report no conflict of interests

Financial Disclosure

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Currie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currie, S., Hadjivassiliou, M., Craven, I.J. et al. Magnetic Resonance Imaging Biomarkers in Patients with Progressive Ataxia: Current Status and Future Direction. Cerebellum 12, 245–266 (2013). https://doi.org/10.1007/s12311-012-0405-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0405-3

Keywords

Navigation