Skip to main content

Advertisement

Log in

The Ever Expanding Spinocerebellar Ataxias. Editorial

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The spinocerebellar ataxias (SCAs) are a clinically, genetically, and neuropathologically heterogeneous group of neurological disorders defined by variable degrees of cerebellar ataxia often accompanied by additional cerebellar and non-cerebellar symptoms that, in many cases, defy differentiation based on clinical characterisation alone. The clinical symptoms are triggered by neurodegeneration of the cerebellum and its relay connexions. The current identification of at least 43 SCA subtypes and the causative molecular defects in 27 of them refine the clinical diagnosis, provide molecular testing of at risk, a/pre-symptomatic, prenatal or pre-implantation and facilitate genetic counselling. The recent discovery of new causative SCA genes along with the respective scientific advances is uncovering high complexity and altered molecular pathways involved in the mechanisms by which the mutant gene products cause pathogenesis. Fortunately, the intensive ongoing clinical and neurogenetic research together with the applied molecular approaches is sure to yield scientific advances that will be translated into developing effective treatments for the spinocerebellar ataxias and other similar neurological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADCA:

Autosomal dominant spinocerebellar ataxia

ADHD:

Attention deficit/hyperactivity disorder

ADNOA:

Ataxia with deafness, narcolepsy, and optic atrophy

ADSA:

Autosomal dominant sensory ataxia

AFG3L2:

ATPase family gene 3-like 2

ARP1:

Actin-related protein-1

ATN1:

Atrophin-1

ATXN1:

Ataxin-1

ATXN2:

Ataxin-2

ATXN3:

Ataxin-3

ATXN8:

Ataxin-8

ATXN8OS:

Ataxin-8 opposite strand

Ca2+ :

Calcium ion

BEAN1:

Brain expressed associated NEDD4

CACNA1A:

Calcium channel, voltage-dependent, P/Q type, alpha 1A subunit

CACNB4:

Calcium channel, voltage-dependent, subunit beta 4

CAG:

DNA sequence coding for glutamine

DRPLA:

Dentatorubral-pallidoluysian atrophy

EA:

Episodic ataxia

EAAT1:

Excitatory amino acid transporter 1

EMQN:

European Molecular Quality Genetics network

FGF14:

Fibroblast growth factor 14

HGNC:

HUGO Gene Nomenclature Committee

IFRD1:

Interferon-related developmental regulator gene 1

INAS:

Inventory of non-ataxia symptoms

ITPR:

Inositol triphosphate receptor

K+ :

Potassium ion

KCNA1:

Potassium voltage-gated channel, shaker-related subfamily, member 1

KCNC3:

Potassium voltage-gated channel subfamily C member 3

MJD:

Machado–Joseph disease

NOP56:

Ribonucleoprotein homolog yeast

OECD:

Organisation for Economic Co-operation and Development

PDYN:

Prodynorphin

PPP2R2B:

Serine/threonine protein phosphatase 2 (formerly 2A) 55 kDa regulatory subunit B beta isoform

PRKCG:

Protein kinase C gamma

SARA:

Scale for the Assessment and Rating of Ataxia

SCA:

Spinocerebellar ataxia

SCN8A:

Sodium channel, voltage gated, type VIII, alpha subunit

SLC1A3:

Solute carrier family 1 member 3

SPAX1:

Autosomal dominant spastic ataxia

SPTBN2:

Beta-III spectrin

TBP:

TATA box binding protein

TK2:

Thymidine kinase 2

TTBK2:

Tau tubulin kinase-2

References

  1. Matilla-Dueñas A, Goold R, Giunti P. Molecular pathogenesis of spinocerebellar ataxias. Brain. 2006;129:1357–70.

    Article  Google Scholar 

  2. Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol. 2010;9:885–94.

    Article  PubMed  CAS  Google Scholar 

  3. Matilla-Dueñas A, Sanchez I, Corral-Juan M, Davalos A, Alvarez R, Latorre P. Cellular and molecular pathways triggering neurodegeneration in the spinocerebellar ataxias. Cerebellum. 2010;9:148–66.

    Article  PubMed  Google Scholar 

  4. Matilla-Dueñas A. Machado–Joseph disease and other rare spinocerebellar ataxias. In: Ahmad S, editor. Neurodegenerative diseases. Austin: Landes Bioscience; 2012. p. 172–88.

    Google Scholar 

  5. Matilla-Dueñas A, Corral-Juan M, Volpini V, Sanchez I. The spinocerebellar ataxias: clinical aspects and molecular genetics. In: Ahmad SI, editor. Neurodegenerative diseases. Austin: Landes Bioscience; 2012. p. 351–74.

    Google Scholar 

  6. McKusick V (2010) Online Mendelian Inheritance in Man, OMIM (TM). McKusick-Nathans Institute of Genetic Medicine Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD

  7. Pagon RA, Bird TC, Dolan CR, Stephenson DA. Gene reviews [internet]. Seattle: University of Washington; 1993–2010.

    Google Scholar 

  8. Klockgether T. The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum. 2008;7:101–5.

    Article  PubMed  CAS  Google Scholar 

  9. Tsuji S, Onodera O, Goto J, Nishizawa M. Sporadic ataxias in Japan—a population-based epidemiological study. Cerebellum. 2008;7:189–97.

    Article  PubMed  CAS  Google Scholar 

  10. Erichsen AK, Koht J, Stray-Pedersen A, Abdelnoor M, Tallaksen CM. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: a population-based study. Brain J Neurol. 2009;132:1577–88.

    Article  Google Scholar 

  11. Velazquez Perez L, Cruz GS, Santos Falcon N, Almaguer Mederos LE, Escalona Batallan K, Rodriguez Labrada R, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett. 2009;454:157–60.

    Article  PubMed  CAS  Google Scholar 

  12. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  PubMed  CAS  Google Scholar 

  13. Schmitz-Hubsch T, Fimmers R, Rakowicz M, Rola R, Zdzienicka E, Fancellu R, et al. Responsiveness of different rating instruments in spinocerebellar ataxia patients. Neurology. 2011;74:678–84.

    Article  Google Scholar 

  14. Schmitz-Hubsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, et al. Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology. 2008;71:982–9.

    Article  PubMed  CAS  Google Scholar 

  15. Chan E, Charles P, Ribai P, Goizet C, Marelli C, Vincitorio CM, et al. Quantitative assessment of the evolution of cerebellar signs in spinocerebellar ataxias. Mov Disord. 2011;26:534–8.

    Article  PubMed  Google Scholar 

  16. Jacobi H, Bauer P, Giunti P, Labrum R, Sweeney MG, Charles P, et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology. 2011;77(11):1035–41.

    Article  PubMed  CAS  Google Scholar 

  17. Orr H, M-y C, Banfi S, Kwiatkowski Jr TJ, Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide (CAG) repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4:221–6.

    Article  PubMed  CAS  Google Scholar 

  18. Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet. 2011;89:121–30.

    Article  PubMed  CAS  Google Scholar 

  19. Sequeiros J, Martindale J, Seneca S. EMQN Best Practice Guidelines for molecular genetic testing of SCAs. Eur J Hum Genet. 2010;18:1173–6.

    Article  PubMed  Google Scholar 

  20. Sequeiros J, Seneca S, Martindale J. Consensus and controversies in best practices for molecular genetic testing of spinocerebellar ataxias. Eur J Hum Genet. 2010;18:1188–95.

    Article  PubMed  Google Scholar 

  21. Ogawa M. Pharmacological treatments of cerebellar ataxia. Cerebellum. 2004;3:107–11.

    Article  PubMed  CAS  Google Scholar 

  22. Manto M, Marmolino D. Cerebellar ataxias. Curr Opin Neurol. 2009;22:419–29.

    Article  PubMed  Google Scholar 

  23. Trujillo-Martin MM, Serrano-Aguilar P, Monton-Alvarez F, Carrillo-Fumero R. Effectiveness and safety of treatments for degenerative ataxias: a systematic review. Mov Disord. 2009;24:1111–24.

    Article  PubMed  Google Scholar 

  24. Goizet C, Lesca G, Durr A. Presymptomatic testing in Huntington’s disease and autosomal dominant cerebellar ataxias. Neurology. 2002;59:1330–6.

    Article  PubMed  CAS  Google Scholar 

  25. Watson MJ. Systematic review of the effectiveness of physiotherapy for cerebellar dysfunction. Clin Rehabil. 2009;23:764–5.

    Article  PubMed  Google Scholar 

  26. Ilg W, Synofzik M, Brotz D, Burkard S, Giese MA, Schols L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology. 2009;73:1823–30.

    Article  PubMed  CAS  Google Scholar 

  27. Missaoui B, Thoumie P. How far do patients with sensory ataxia benefit from so-called “proprioceptive rehabilitation”? Neurophysiol Clin. 2009;39:229–33.

    Article  PubMed  CAS  Google Scholar 

  28. Corral-Juan M, Corral J, San Nicolás H, Volpini V, Matilla-Dueñas A. Genetics of the autosomal dominant spinocerebellar ataxias. In: eLS. Chichester: Wiley; 2011. doi:10.1002/9780470015902.a0006076.

    Google Scholar 

Further Reading

  1. Matilla-Dueñas A. Machado–Joseph disease and other rare spinocerebellar ataxias. In: Ahmad S, editor. Neurodegenerative diseases. Austin: Landes Bioscience; 2012. p. 172–88.

    Google Scholar 

  2. Matilla-Dueñas A, Corral-Juan M, Volpini V, Sanchez I. The spinocerebellar ataxias: clinical aspects and molecular genetics. In: Ahmad SI, editor. Neurodegenerative diseases. Austin: Landes Bioscience; 2012. p. 351–74.

    Google Scholar 

  3. Matilla-Dueñas A, Serrano C, Alvarez R, Ivánovic-Barbeito YP, Latorre P, Genís D. Novel therapeutic challenges in cerebellar diseases. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. New York: Springer; 2012.

    Google Scholar 

  4. Subramony SH. Overview of autosomal dominant ataxias. In: Subramony SH, Dürr A, editors. Ataxic disorders. Handbook of clinical neurology, vol. 103. Edinburgh: Elsevier; 2012. 3rd series.

    Google Scholar 

Download references

Acknowledgments

Dr. Ivelisse Sanchez’s helpful comments and suggestions are kindly acknowledged. Dr. Antoni Matilla’s scientific research on ataxias is funded by the Spanish Ministry of Science and Innovation (BFU2008-00527/BMC), the Carlos III Health Institute (CP08/00027), the Latin American Science and Technology Development Programme (CYTED) (RIBERMOV, 210RT0390), the European Commission (EUROSCA project, LHSM-CT-2004-503304), and the Fundació de la Marató de TV3 (Televisió de Catalunya, 100730). We are indebted to the Spanish Ataxia Association (FEDAES), the Spanish Federation for Rare Diseases (FEDER), and the ataxia patients for their continuous support and motivation. Antoni Matilla is a Miguel Servet Investigator in Neurosciences of the Spanish National Health System.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoni Matilla-Dueñas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matilla-Dueñas, A. The Ever Expanding Spinocerebellar Ataxias. Editorial. Cerebellum 11, 821–827 (2012). https://doi.org/10.1007/s12311-012-0376-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-012-0376-4

Keywords

Navigation