Skip to main content
Log in

Pathogenic mechanisms underlying spinocerebellar ataxia type 1

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The family of hereditary cerebellar ataxias is a large group of disorders with heterogenous clinical manifestations and genetic etiologies. Among these, over 30 autosomal dominantly inherited subtypes have been identified, collectively referred to as the spinocerebellar ataxias (SCAs). Generally, the SCAs are characterized by a progressive gait impairment with classical cerebellar features, and in a subset of SCAs, accompanied by extra-cerebellar features. Beyond the common gait impairment and cerebellar atrophy, the wide range of additional clinical features observed across the SCAs is likely explained by the diverse set of mutated genes that encode proteins with seemingly disparate functional roles in nervous system biology. By synthesizing knowledge obtained from studies of the various SCAs over the past several decades, convergence onto a few key cellular changes, namely ion channel dysfunction and transcriptional dysregulation, has become apparent and may represent central mechanisms of cerebellar disease pathogenesis. This review will detail our current understanding of the molecular pathogenesis of the SCAs, focusing primarily on the first described autosomal dominant spinocerebellar ataxia, SCA1, as well as the emerging common core mechanisms across the various SCAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–183

    PubMed  Google Scholar 

  2. Manto MU (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4:2–6

    CAS  PubMed  Google Scholar 

  3. Schöls L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3:291–304

    PubMed  Google Scholar 

  4. Brusco A et al (2004) Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families. Arch Neurol 61:727–733

    PubMed  Google Scholar 

  5. Zortea M et al (2004) Prevalence of inherited ataxias in the province of Padua, Italy. Neuroepidemiology 23:275–280

    CAS  PubMed  Google Scholar 

  6. Joo BE, Lee CN, Park KW (2012) Prevalence rate and functional status of cerebellar ataxia in Korea. Cerebellum 11:733–738

    PubMed  Google Scholar 

  7. Anheim M, Tranchant C, Koenig M (2012) The autosomal recessive cerebellar ataxias. N Engl J Med 366:636–646

    CAS  PubMed  Google Scholar 

  8. Klockgether T, Mariotti C, Paulson HL (2019) Spinocerebellar ataxia. Nat Rev Dis Primers 5:24

    PubMed  Google Scholar 

  9. Paulson HL, Shakkottai VG, Clark HB, Orr HT (2017) Polyglutamine spinocerebellar ataxias—from genes to potential treatments. Nat Rev Neurosci 18:613–626

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jayadev S, Bird TD (2013) Hereditary ataxias: overview. Genet Med 15:673–683

    CAS  PubMed  Google Scholar 

  11. La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352:77–79

    PubMed  Google Scholar 

  12. Ridley RM, Frith CD, Crow TJ, Conneally PM (1988) Anticipation in Huntington’s disease is inherited through the male line but may originate in the female. J Med Genet 25:589–595

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Paulson HL (2009) The spinocerebellar ataxias. J Neuroophthalmol 29:227–237

    PubMed  PubMed Central  Google Scholar 

  14. Nance MA (1997) Clinical aspects of CAG repeat diseases. Brain Pathol 7:881–900

    CAS  PubMed  Google Scholar 

  15. La Spada RA (1997) Trinucleotide repeat instability: genetic features and molecular mechanisms. Brain Pathol 7:943–963

    PubMed  Google Scholar 

  16. Ranum LPW et al (1994) Molecular and clinical correlations in spinocerebellar ataxia type I: evidence for familial effects on the age at onset. Am J Hum Genet 55:244–252

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yakura H, Wakisaka A, Fujimoto S, Itakura K (1974) Letter: hereditary ataxia and HL-A genotypes. N Engl J Med 291:154–155

    CAS  PubMed  Google Scholar 

  18. Zoghbi HY, Pollack MS, Lyons LA, Ferrell RE, Daiger SP, Beaudet AL (1988) Spinocerebellar ataxia: variable age of onset and linkage to human leukocyte antigen in a large kindred. Ann Neurol 23:580–584

    CAS  PubMed  Google Scholar 

  19. Zoghbi HY, Sandkuijl LA, Ott J, Daiger SP, Pollack M, O’Brien WE, Beaudet AL (1989) Assignment of autosomal dominant spinocerebellar ataxia (SCA1) centromeric to the HLA region on the short arm of chromosome 6, using multilocus linkage analysis. Am J Hum Genet 44:255–263

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Macdonald M (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Google Scholar 

  21. Ranum LPW, Duvick LA, Rich SS, Schut LJ, Litt M, Orr HT (1991) Localization of the autosomal dominant HLA-linked spinocerebellar ataxia (SCA1) locus, in two kindreds, within an 8-cM subregion of chromosome 6p. Am J Hum Genet 49:31–41

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zoghbi HY et al (1991) The gene for autosomal dominant spinocerebellar ataxia (SCA1) maps telomeric. Am J Hum Genet 49:23–30

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Orr HT et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4:221–226

    CAS  PubMed  Google Scholar 

  24. Moseley ML et al (1998) Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 51:1666–1671

    CAS  PubMed  Google Scholar 

  25. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    CAS  PubMed  Google Scholar 

  26. Genis D, Matilla T, Volpini V, Rosell J, Davalos A, Ferrer I, Molins A, Estivill X (1995) Clinical, neuropathologic, and genetic studies of a large spinocerebellar ataxia type 1 (SCA1) kindred: (CAG)n expansion and early premonitory signs and symptoms. Neurology 45:24–30

    CAS  PubMed  Google Scholar 

  27. Robitaille Y, Lopes-Cendes I, Becher M, Rouleau G, Clark AW (1997) The neuropathology of CAG repeat diseases: review and update of genetic and molecular features. Brain Pathol 7:901–926

    CAS  PubMed  Google Scholar 

  28. Rub U et al (2012) Spinocerebellar ataxia type 1 (SCA1): new pathoanatomical and clinico-pathological insights. Neuropathol Appl Neurobiol 38:665–680

    CAS  PubMed  Google Scholar 

  29. Martins CR Jr, Martinez ARM, de Rezende TJR, Branco LMT, Pedroso JL, Barsottini OGP, Lopes-Cendes I, Franca MC Jr (2017) Spinal cord damage in spinocerebellar ataxia type 1. Cerebellum 16:792–796

    PubMed  Google Scholar 

  30. Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT (1998) Ataxin-1 nuclear localization and aggregation. Cell 95:41–53

    CAS  PubMed  Google Scholar 

  31. Servadio A, Koshy B, Armstrong D, Antalffy B, Orr HT, Zoghbi HY (1995) Expression analysis of the ataxin-1 protein in tissues from normal and spinocerebellar ataxia type 1 individuals. Nat Genet 10:94–98

    CAS  PubMed  Google Scholar 

  32. Zhang Y et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Banfi S et al (1994) Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 7:513–520

    CAS  PubMed  Google Scholar 

  34. Irwin S, Vandelft M, Pinchev D, Howell JL, Graczyk J, Orr HT, Truant R (2005) RNA association and nucleocytoplasmic shuttling by ataxin-1. J Cell Sci 118:233–242

    CAS  PubMed  Google Scholar 

  35. Yue S, Serra HG, Zoghbi HY, Orr HT (2001) The spinocerebellar ataxia type 1 protein, ataxin-1, has RNA-binding activity that is inversely affected by the length of its polyglutamine tract. Hum Mol Genet 10:25–30

    CAS  PubMed  Google Scholar 

  36. Zoghbi HY, Orr HT (2009) Pathogenic mechanisms of a polyglutamine-mediated neurodegenerative disease, spinocerebellar ataxia type 1. J Biol Chem 284:7425–7429

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chung MY, Ranum LP, Duvick LA, Servadio A, Zoghbi HY, Orr HT (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat Genet 5:254–258

    CAS  PubMed  Google Scholar 

  38. Zuhlke C, Dalski A, Hellenbroich Y, Bubel S, Schwinger E, Burk K (2002) Spinocerebellar ataxia type 1 (SCA1): phenotype-genotype correlation studies in intermediate alleles. Eur J Hum Genet 10:204–209

    CAS  PubMed  Google Scholar 

  39. Pearson CE, Eichler EE, Lorenzetti D, Kramer SF, Zoghbi HY, Nelson DL, Sinden RR (1998) Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry 37:2701–2708

    CAS  PubMed  Google Scholar 

  40. Kraus-Perrotta C, Lagalwar S (2016) Expansion, mosaicism and interruption: mechanisms of the CAG repeat mutation in spinocerebellar ataxia type 1. Cerebellum Ataxias 3:20

    PubMed  PubMed Central  Google Scholar 

  41. Menon RP et al (2013) The role of interruptions in polyQ in the pathology of SCA1. PLoS Genet 9:e1003648

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schut JW (1950) Hereditary ataxia. Arch Neurol Psychiatry 63:535–568

    Google Scholar 

  43. Quan F, Janas J, Popovich BW (1995) A novel CAG repeat configuration in the SCA1 gene: implications for the molecular diagnostics of spinocerebellar ataxia type 1. Hum Mol Genet 4:2411–2413

    CAS  PubMed  Google Scholar 

  44. Matsuyama Z, Izumi Y, Kameyama M, Kawakami H, Nakamura S (1999) The effect of CAT trinucleotide interruptions on the age at onset of spinocerebellar ataxia type 1 (SCA1). J Med Genet 36:546–548

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Goldfarb LG et al (1996) Unstable triplet repeat and phenotypic variability of spinocerebellar ataxia type 1. Ann Neurol 39:500–506

    CAS  PubMed  Google Scholar 

  46. Sen S, Dash D, Pasha S, Brahmachari SK (2003) Role of histidine interruption in mitigating the pathological effects of long polyglutamine stretches in SCA1: a molecular approach. Protein Sci 12:953–962

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Jayaraman M, Kodali R, Wetzel R (2009) The impact of ataxin-1-like histidine insertions on polyglutamine aggregation. Protein Eng Des Sel 22:469–478

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Calabresi V, Guida S, Servadio A, Jodice C (2001) Phenotypic effects of expanded ataxin-1 polyglutamines with interruptions in vitro. Brain Res Bull 56:337–342

    CAS  PubMed  Google Scholar 

  49. Matilla A et al (1998) Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J Neurosci 18:5508–5516

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Crespo-Barreto J, Fryer JD, Shaw CA, Orr HT, Zoghbi HY (2010) Partial loss of ataxin-1 function contributes to transcriptional dysregulation in spinocerebellar ataxia type 1 pathogenesis. PLoS Genet 6:e1001021

    PubMed  PubMed Central  Google Scholar 

  51. Lim J, Crespo-Barreto J, Jafar-Nejad P, Bowman AB, Richman R, Hill DE, Orr HT, Zoghbi HY (2008) Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452:713–718

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mizutani A, Wang L, Rajan H, Vig PJ, Alaynick WA, Thaler JP, Tsai CC (2005) Boat, an AXH domain protein, suppresses the cytotoxicity of mutant ataxin-1. EMBO J 24:3339–3351

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bowman AB et al (2007) Duplication of Atxn1l suppresses SCA1 neuropathology by decreasing incorporation of polyglutamine-expanded ataxin-1 into native complexes. Nat Genet 39:373–379

    CAS  PubMed  Google Scholar 

  54. Chen H-K et al (2003) Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 113:457–468

    CAS  PubMed  Google Scholar 

  55. de Chiara C, Menon RP, Strom M, Gibson TJ, Pastore A (2009) Phosphorylation of S776 and 14-3-3 binding modulate ataxin-1 interaction with splicing factors. PLoS ONE 4:e8372

    PubMed  PubMed Central  Google Scholar 

  56. Lam YC et al (2006) ATAXIN-1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology. Cell 127:1335–1347

    CAS  PubMed  Google Scholar 

  57. Fryer JD et al (2011) Exercise and genetic rescue of SCA1 via the transcriptional repressor Capicua. Science 334:690–693

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim E, Lu HC, Zoghbi HY, Song JJ (2013) Structural basis of protein complex formation and reconfiguration by polyglutamine disease protein ataxin-1 and Capicua. Genes Dev 27:590–595

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Gehrking KM, Andresen JM, Duvick L, Lough J, Zoghbi HY, Orr HT (2011) Partial loss of Tip60 slows mid-stage neurodegeneration in a spinocerebellar ataxia type 1 (SCA1) mouse model. Hum Mol Genet 20:2204–2212

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Serra HG et al (2006) RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell 127:697–708

    CAS  PubMed  Google Scholar 

  61. Tsuda H et al (2005) The AXH domain of Ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/Senseless proteins. Cell 122:633–644

    CAS  PubMed  Google Scholar 

  62. Matilla A, Koshy BT, Cummings CJ, Isobe T, Orr HT, Zoghbi HY (1997) The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature 389:974–978

    CAS  PubMed  Google Scholar 

  63. Cvetanovic M, Rooney RJ, Garcia JJ, Toporovskaya N, Zoghbi HY, Opal P (2007) The role of LANP and ataxin 1 in E4F-mediated transcriptional repression. EMBO Rep 8:671–677

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Opal P, Garcia JJ, Propst F, Matilla A, Orr HT, Zoghbi HY (2003) Mapmodulin/leucine-rich acidic nuclear protein binds the light chain of microtubule-associated protein 1B and modulates neuritogenesis. J Biol Chem 278:34691–34699

    CAS  PubMed  Google Scholar 

  65. Cvetanovic M, Kular RK, Opal P (2012) LANP mediates neuritic pathology in spinocerebellar ataxia type 1. Neurobiol Dis 48:526–532

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rousseaux MWC et al (2018) ATXN1-CIC complex is the primary driver of cerebellar pathology in spinocerebellar ataxia type 1 through a gain-of-function mechanism. Neuron 97(1235–1243):e5

    Google Scholar 

  67. Conforti FL et al (2012) Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in amyotrophic lateral sclerosis. Neurology 79:2315–2320

    CAS  PubMed  Google Scholar 

  68. Lattante S et al (2018) ATXN1 intermediate-length polyglutamine expansions are associated with amyotrophic lateral sclerosis. Neurobiol Aging 64:157e1–157e5

    Google Scholar 

  69. Bertram L et al (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83:623–632

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Suh J et al (2019) Loss of ataxin-1 potentiates alzheimer’s pathogenesis by elevating cerebral BACE1 transcription. Cell 178(1159–1175):e17

    Google Scholar 

  71. Zhang C, Browne A, Child D, Divito JR, Stevenson JA, Tanzi RE (2010) Loss of function of ATXN1 increases amyloid beta-protein levels by potentiating β-secretase processing of β-amyloid precursor protein. J Biol Chem 285:8515–8526

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Todd TW, Kokubu H, Miranda HC, Cortes CJ, La Spada AR, Lim J (2015) Nemo-like kinase is a novel regulator of spinal and bulbar muscular atrophy. Elife 4:e08493

    PubMed  PubMed Central  Google Scholar 

  73. Humbert S, Bryson EA, Cordelières FP, Connors NC, Datta SR, Finkbeiner S, Greenberg ME, Saudou F (2002) The IGF-1/Akt pathway is neuroprotective in Huntington’s disease and involves huntingtin phosphorylation by Akt. Dev Cell 2:831–837

    CAS  PubMed  Google Scholar 

  74. Gioeli D, Black BE, Gordon V, Spencer A, Kesler CT, Eblen ST, Paschal BM, Weber MJ (2006) Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol 20:503–515

    CAS  PubMed  Google Scholar 

  75. Chen S, Kesler CT, Paschal BM, Balk SP (2009) Androgen receptor phosphorylation and activity are regulated by an association with protein phosphatase 1. J Biol Chem 284:25576–25584

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lagalwar S, Orr HT (2013) Regulation of ataxin-1 phosphorylation and its impact on biology. Methods Mol Biol 1010:201–209

    CAS  PubMed  Google Scholar 

  77. Orr HT (2012) SCA1-phosphorylation, a regulator of ataxin-1 function and pathogenesis. Prog Neurobiol 99:179–185

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ju H, Kokubu H, Lim J (2014) Beyond the glutamine expansion: influence of posttranslational modifications of ataxin-1 in the pathogenesis of spinocerebellar ataxia type 1. Mol Neurobiol 50:866–874

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Emamian ES, Kaytor MD, Duvick LA, Zu T, Tousey SK, Zoghbi HY, Clark HB, Orr HT (2003) Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 38:375–387

    CAS  PubMed  Google Scholar 

  80. Duvick L et al (2010) SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron 67:929–935

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lai S, O'Callaghan B, Zoghbi HY, Orr HT (2011) 14-3-3 Binding to ataxin-1(ATXN1) regulates its dephosphorylation at Ser-776 and transport to the nucleus. J Biol Chem 286:34606–34616

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Menon RP, Soong D, de Chiara C, Holt MR, Anilkumar N, Pastore A (2012) The importance of serine 776 in ataxin-1 partner selection: a FRET analysis. Sci Rep 2:919

    PubMed  PubMed Central  Google Scholar 

  83. Vierra-Green CA, Orr HT, Zoghbi HY, Ferrington DA (2005) Identification of a novel phosphorylation site in ataxin-1. Biochim Biophys Acta 1744:11–18

    CAS  PubMed  Google Scholar 

  84. Ju H et al (2013) Polyglutamine disease toxicity is regulated by nemo-like kinase in spinocerebellar ataxia type 1. J Neurosci 33:9328–9336

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaytor MD, Byam CE, Tousey SK, Stevens SD, Zoghbi HY, Orr HT (2005) A cell-based screen for modulators of ataxin-1 phosphorylation. Hum Mol Genet 14:1095–1105

    CAS  PubMed  Google Scholar 

  86. Jorgensen ND, Andresen JM, Pitt JE, Swenson MA, Zoghbi HY, Orr HT (2007) Hsp70/Hsc70 regulates the effect phosphorylation has on stabilizing ataxin-1. J Neurochem 102:2040–2048

    CAS  PubMed  Google Scholar 

  87. Jorgensen ND et al (2009) Phosphorylation of ATXN1 at Ser776 in the cerebellum. J Neurochem 110:675–686

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Perez Ortiz JM et al (2018) Reduction of protein kinase A-mediated phosphorylation of ATXN1-S776 in Purkinje cells delays onset of Ataxia in a SCA1 mouse model. Neurobiol Dis 116:93–105

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Park J et al (2013) RAS-MAPK-MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature 498:325–331

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Bondar VV et al (2018) PAK1 regulates ATXN1 levels providing an opportunity to modify its toxicity in spinocerebellar ataxia type 1. Hum Mol Genet 27:2863–2873

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hong S, Lee S, Cho SG, Kang S (2008) UbcH6 interacts with and ubiquitinates the SCA1 gene product ataxin-1. Biochem Biophys Res Commun 371:256–260

    CAS  PubMed  Google Scholar 

  92. Lee S, Hong S, Kang S (2008) The ubiquitin-conjugating enzyme UbcH6 regulates the transcriptional repression activity of the SCA1 gene product ataxin-1. Biochem Biophys Res Commun 372:735–740

    CAS  PubMed  Google Scholar 

  93. Al-Ramahi I et al (2006) CHIP protects from the neurotoxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol Chem 281:26714–26724

    CAS  PubMed  Google Scholar 

  94. Choi JY et al (2007) Co-chaperone CHIP promotes aggregation of ataxin-1. Mol Cell Neurosci 34:69–79

    CAS  PubMed  Google Scholar 

  95. Quintana-Gallardo L, Martin-Benito J, Marcilla M, Espadas G, Sabido E, Valpuesta JM (2019) The cochaperone CHIP marks Hsp70- and Hsp90-bound substrates for degradation through a very flexible mechanism. Sci Rep 9:5102

    PubMed  PubMed Central  Google Scholar 

  96. Davidson JD, Riley B, Burright EN, Duvick LA, Zoghbi HY, Orr HT (2000) Identification and characterization of an ataxin-1-interacting protein: A1Up, a ubiquitin-like nuclear protein. Hum Mol Genet 9:2305–2312

    CAS  PubMed  Google Scholar 

  97. Riley BE, Xu Y, Zoghbi HY, Orr HT (2004) The effects of the polyglutamine repeat protein ataxin-1 on the UbL-UBA protein A1Up. J Biol Chem 279:42290–42301

    CAS  PubMed  Google Scholar 

  98. Cummings CJ et al (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24:879–892

    CAS  PubMed  Google Scholar 

  99. Cummings CJ, Mancini MA, Antalffy B, DeFranco DB, Orr HT, Zoghbi HY (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154

    CAS  PubMed  Google Scholar 

  100. Cummings CJ, Sun Y, Opal P, Antalffy B, Mestril R, Orr HT, Dillmann WH, Zoghbi HY (2001) Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 10:1511–1518

    CAS  PubMed  Google Scholar 

  101. Ryu J, Lee DH (2018) Dual-specificity phosphatase 18 modulates the SUMOylation and aggregation of Ataxin-1. Biochem Biophys Res Commun 502:389–396

    CAS  PubMed  Google Scholar 

  102. Ryu J, Cho S, Park BC, Lee DH (2010) Oxidative stress-enhanced SUMOylation and aggregation of ataxin-1: Implication of JNK pathway. Biochem Biophys Res Commun 393:280–285

    CAS  PubMed  Google Scholar 

  103. Riley BE, Zoghbi HY, Orr HT (2005) SUMOylation of the polyglutamine repeat protein, ataxin-1, is dependent on a functional nuclear localization signal. J Biol Chem 280:21942–21948

    CAS  PubMed  Google Scholar 

  104. Vig PJ, Wei J, Shao Q, Hebert MD, Subramony SH, Sutton LT (2007) Role of tissue transglutaminase type 2 in calbindin-D28k interaction with ataxin-1. Neurosci Lett 420:53–57

    CAS  PubMed  PubMed Central  Google Scholar 

  105. D'Souza DR, Wei J, Shao Q, Hebert MD, Subramony SH, Vig PJ (2006) Tissue transglutaminase crosslinks ataxin-1: possible role in SCA1 pathogenesis. Neurosci Lett 409:5–9

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Gennarino VA et al (2015) Pumilio1 haploinsufficiency leads to SCA1-like neurodegeneration by increasing wild-type ataxin1 levels. Cell 160:1087–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tsai CC, Kao HY, Mitzutani A, Banayo E, Rajan H, McKeown M, Evans RM (2004) Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proc Natl Acad Sci USA 101:4047–4052

    CAS  PubMed  Google Scholar 

  108. Ingram M et al (2016) Cerebellar transcriptome profiles of ATXN1 transgenic mice reveal SCA1 disease progression and protection pathways. Neuron 89:1194–1207

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tissir F, Goffinet AM (2013) Shaping the nervous system: role of the core planar cell polarity genes. Nat Rev Neurosci 14:525–535

    CAS  PubMed  Google Scholar 

  110. Driessen TM, Lee PJ, Lim J (2018) Molecular pathway analysis towards understanding tissue vulnerability in spinocerebellar ataxia type 1. Elife 7:e39981

    PubMed  PubMed Central  Google Scholar 

  111. Friedrich J et al (2018) Antisense oligonucleotide-mediated ataxin-1 reduction prolongs survival in SCA1 mice and reveals disease-associated transcriptome profiles. JCI Insight 3(21):e123193

    PubMed Central  Google Scholar 

  112. Jafar-Nejad P, Ward CS, Richman R, Orr HT, Zoghbi HY (2011) Regional rescue of spinocerebellar ataxia type 1 phenotypes by 14-3-3epsilon haploinsufficiency in mice underscores complex pathogenicity in neurodegeneration. Proc Natl Acad Sci USA 108:2142–2147

    CAS  PubMed  Google Scholar 

  113. Seidel K, Siswanto S, Brunt ER, den Dunnen W, Korf HW, Rub U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol 124:1–21

    CAS  PubMed  Google Scholar 

  114. Koeppen AH (2005) The pathogenesis of spinocerebellar ataxia. Cerebellum 4:62–73

    CAS  PubMed  Google Scholar 

  115. Koeppen AH, Ramirez RL, Bjork ST, Bauer P, Feustel PJ (2013) The reciprocal cerebellar circuitry in human hereditary ataxia. Cerebellum 12:493–503

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Klockgether T (2011) Update on degenerative ataxias. Curr Opin Neurol 24:339–345

    PubMed  Google Scholar 

  117. Takechi Y et al (2013) Impairment of spinal motor neurons in spinocerebellar ataxia type 1-knock-in mice. Neurosci Lett 535:67–72

    CAS  PubMed  Google Scholar 

  118. Orengo JP, van der Heijden ME, Hao S, Tang J, Orr HT, Zoghbi HY (2018) Motor neuron degeneration correlates with respiratory dysfunction in SCA1. Dis Model Mech 11:dmm032623

    PubMed  PubMed Central  Google Scholar 

  119. Verkhratsky A, Parpura V, Pekna M, Pekny M, Sofroniew M (2014) Glia in the pathogenesis of neurodegenerative diseases. Biochem Soc Trans 42:1291–1301

    CAS  PubMed  Google Scholar 

  120. Philips T, Rothstein JD (2014) Glial cells in amyotrophic lateral sclerosis. Exp Neurol 262(Pt B):111–120

    CAS  PubMed  Google Scholar 

  121. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles DE (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Yamanaka K et al (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11:251–253

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, Kollias G, Cleveland DW (2006) Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312:1389–1392

    CAS  PubMed  Google Scholar 

  124. Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217:459–472

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Roth AD, Ramirez G, Alarcon R, Von Bernhardi R (2005) Oligodendrocytes damage in Alzheimer’s disease: beta amyloid toxicity and inflammation. Biol Res 38:381–387

    CAS  PubMed  Google Scholar 

  126. Henstridge CM, Hyman BT, Spires-Jones TL (2019) Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci 20:94–108

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Shin JY, Fang ZH, Yu ZX, Wang CE, Li SH, Li XJ (2005) Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity. J Cell Biol 171:1001–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hsiao HY, Chern Y (2010) Targeting glial cells to elucidate the pathogenesis of Huntington’s disease. Mol Neurobiol 41:248–255

    CAS  PubMed  Google Scholar 

  129. Huang B, Wei W, Wang G, Gaertig MA, Feng Y, Wang W, Li XJ, Li S (2015) Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron 85:1212–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Kim JH, Lukowicz A, Qu W, Johnson A, Cvetanovic M (2018) Astroglia contribute to the pathogenesis of spinocerebellar ataxia Type 1 (SCA1) in a biphasic, stage-of-disease specific manner. Glia 66:1972–1987

    PubMed  Google Scholar 

  131. Cvetanovic M, Ingram M, Orr H, Opal P (2015) Early activation of microglia and astrocytes in mouse models of spinocerebellar ataxia type 1. Neuroscience 289:289–299

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ferro A, Sheeler C, Rosa JG, Cvetanovic M (2019) Role of microglia in ataxias. J Mol Biol 431:1792–1804

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Qu W, Johnson A, Kim JH, Lukowicz A, Svedberg D, Cvetanovic M (2017) Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice. J Neuroinflammation 14:107

    PubMed  PubMed Central  Google Scholar 

  134. Ferro A, Qu W, Lukowicz A, Svedberg D, Johnson A, Cvetanovic M (2018) Inhibition of NF-κB signaling in IKKβF/F;LysM Cre mice causes motor deficits but does not alter pathogenesis of spinocerebellar ataxia type 1. PLoS ONE 13:e0200013

    PubMed  PubMed Central  Google Scholar 

  135. Cvetanovic M, Hu YS, Opal P (2017) Mutant ataxin-1 inhibits neural progenitor cell proliferation in SCA1. Cerebellum 16:340–347

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Edamakanti CR, Do J, Didonna A, Martina M, Opal P (2018) Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1. J Clin Invest 128:2252–2265

    PubMed  PubMed Central  Google Scholar 

  137. Mandelli ML, De Simone T, Minati L, Bruzzone MG, Mariotti C, Fancellu R, Savoiardo M, Grisoli M (2007) Diffusion tensor imaging of spinocerebellar ataxias types 1 and 2. AJNR Am J Neuroradiol 28:1996–2000

    CAS  PubMed  Google Scholar 

  138. Pulst SM et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269–276

    CAS  PubMed  Google Scholar 

  139. Imbert G et al (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14:285–291

    CAS  PubMed  Google Scholar 

  140. Sanpei K et al (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14:277–284

    CAS  PubMed  Google Scholar 

  141. Kawaguchi Y et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228

    CAS  PubMed  Google Scholar 

  142. Zhuchenko O et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15:62–69

    CAS  PubMed  Google Scholar 

  143. David G et al (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17:65–70

    CAS  PubMed  Google Scholar 

  144. Nakamura K et al (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441–1448

    CAS  PubMed  Google Scholar 

  145. Zuhlke C et al (2001) Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet 9:160–164

    CAS  PubMed  Google Scholar 

  146. Koide R et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6:9–13

    CAS  PubMed  Google Scholar 

  147. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272–303

    PubMed  Google Scholar 

  148. Hansen ST, Meera P, Otis TS, Pulst SM (2013) Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. Hum Mol Genet 22:271–283

    CAS  PubMed  Google Scholar 

  149. Chopra R, Bushart DD, Shakkottai VG (2018) Dendritic potassium channel dysfunction may contribute to dendrite degeneration in spinocerebellar ataxia type 1. PLoS ONE 13:e0198040

    PubMed  PubMed Central  Google Scholar 

  150. Shakkottai VG, do Carmo Costa M, Dell'Orco JM, Sankaranarayanan A, Wulff H, Paulson HL (2011) Early changes in cerebellar physiology accompany motor dysfunction in the polyglutamine disease spinocerebellar ataxia type 3. J Neurosci 31:13002–13014

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Jeub M, Herbst M, Spauschus A, Fleischer H, Klockgether T, Wuellner U, Evert BO (2006) Potassium channel dysfunction and depolarized resting membrane potential in a cell model of SCA3. Exp Neurol 201:182–192

    CAS  PubMed  Google Scholar 

  152. Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I (2008) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 28:12713–12724

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9162

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bushart DD, Chopra R, Singh V, Murphy GG, Wulff H, Shakkottai VG (2018) Targeting potassium channels to treat cerebellar ataxia. Ann Clin Transl Neurol 5:297–314

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Shakkottai VG et al (2004) Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J Clin Invest 113:582–590

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Bushart DD, Shakkottai VG (2019) Ion channel dysfunction in cerebellar ataxia. Neurosci Lett 688:41–48

    CAS  PubMed  Google Scholar 

  157. McMahon SJ, Pray-Grant MG, Schieltz D, Yates JR 3rd, Grant PA (2005) Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proc Natl Acad Sci USA 102:8478–8482

    CAS  PubMed  Google Scholar 

  158. Palhan VB et al (2005) Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. Proc Natl Acad Sci 102:8472–8477

    CAS  PubMed  Google Scholar 

  159. Friedman MJ, Wang CE, Li XJ, Li S (2008) Polyglutamine expansion reduces the association of TATA-binding protein with DNA and induces DNA binding-independent neurotoxicity. J Biol Chem 283:8283–8290

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 10:1519–1528

    CAS  PubMed  Google Scholar 

  161. Du X, Wang J, Zhu H, Rinaldo L, Lamar KM, Palmenberg AC, Hansel C, Gomez CM (2013) Second cistron in CACNA1A gene encodes a transcription factor mediating cerebellar development and SCA6. Cell 154:118–133

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Du X et al (2019) α1ACT is essential for survival and early cerebellar programming in a critical neonatal window. Neuron 102:770–785 (e7)

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM (2006) C-termini of P/Q-type Ca2+ channel α1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum Mol Genet 15:1587–1599

    CAS  PubMed  Google Scholar 

  164. Tsou WL, Qiblawi SH, Hosking RR, Gomez CM, Todi SV (2016) Polyglutamine length-dependent toxicity from α1ACT in Drosophila models of spinocerebellar ataxia type 6. Biol Open 5:1770–1775

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Nucifora FC Jr et al (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291:2423–2428

    CAS  PubMed  Google Scholar 

  166. Chou AH, Yeh TH, Ouyang P, Chen YL, Chen SY, Wang HL (2008) Polyglutamine-expanded ataxin-3 causes cerebellar dysfunction of SCA3 transgenic mice by inducing transcriptional dysregulation. Neurobiol Dis 31:89–101

    CAS  PubMed  Google Scholar 

  167. Toonen LJA et al (2018) Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model. Mol Neurodegener 13:31

    PubMed  PubMed Central  Google Scholar 

  168. Alves S et al (2014) The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice. Acta Neuropathol 128:705–722

    CAS  PubMed  Google Scholar 

  169. Chai Y, Koppenhafer SL, Shoesmith SJ, Perez MK, Paulson HL (1999) Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Hum Mol Genet 8:673–682

    CAS  PubMed  Google Scholar 

  170. Seidel K et al (2017) On the distribution of intranuclear and cytoplasmic aggregates in the brainstem of patients with spinocerebellar ataxia type 2 and 3. Brain Pathol 27:345–355

    CAS  PubMed  Google Scholar 

  171. Skinner PJ, Koshy BT, Cummings CJ, Klement IA, Helin K, Servadio A, Zoghbi HY, Orr HT (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389:971–974

    CAS  PubMed  Google Scholar 

  172. Paulson HL et al (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333–344

    CAS  PubMed  Google Scholar 

  173. Becher MW et al (1997) Dentatorubral and pallidoluysian atrophy (DRPLA). Clinical and neuropathological findings in genetically confirmed North American and European pedigrees. Mov Disord 12:519–530

    CAS  PubMed  Google Scholar 

  174. Holmberg M et al (1998) Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7:913–918

    CAS  PubMed  Google Scholar 

  175. Paul S, Dansithong W, Figueroa KP, Scoles DR, Pulst SM (2018) Staufen1 links RNA stress granules and autophagy in a model of neurodegeneration. Nat Commun 9:1–4

    Google Scholar 

  176. Todd TW, Lim J (2013) Aggregation formation in the polyglutamine diseases: protection at a cost? Mol Cells 36:185–194

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Scoles DR et al (2017) Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature 544:362–366

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Niu C et al (2018) Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Sci Transl Med 10:eaap8677

    PubMed  PubMed Central  Google Scholar 

  179. Hu J et al (2011) Allele-selective inhibition of ataxin-3 (ATX3) expression by antisense oligomers and duplex RNAs. Biol Chem 392:315–325

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Toonen LJA, Rigo F, van Attikum H, van Roon-Mom WMC (2017) Antisense oligonucleotide-mediated removal of the polyglutamine repeat in spinocerebellar ataxia type 3 mice. Mol Ther Nucleic Acids 8:232–242

    CAS  PubMed  PubMed Central  Google Scholar 

  181. McLoughlin HS et al (2018) Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice. Ann Neurol 84:64–77

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Moore LR et al (2017) evaluation of antisense oligonucleotides targeting ATXN3 in SCA3 mouse models. Mol Ther Nucleic Acids 7:200–210

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Lim laboratory for useful feedback, critiques, and comments. This work was supported by National Institutes of Health Grants NS083706 (J.L.), NS088321 (J.L.), MH119803 (J.L.), AG066447 (J.L.), T32 NS007224 (L.T.), Lo Graduate Fellowship for Excellence in Stem Cell Research (L.T.), and the Gruber Science Fellowship (L.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janghoo Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejwani, L., Lim, J. Pathogenic mechanisms underlying spinocerebellar ataxia type 1. Cell. Mol. Life Sci. 77, 4015–4029 (2020). https://doi.org/10.1007/s00018-020-03520-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03520-z

Keywords

Navigation