Skip to main content

Advertisement

Log in

3D Morphometric Analysis of Human Fetal Cerebellar Development

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

To date, growth of the human fetal cerebellum has been estimated primarily from linear measurements from ultrasound and 2D magnetic resonance imaging (MRI). In this study, we use 3D analytical methods to develop normative growth trajectories for the cerebellum in utero. We measured cerebellar volume, linear dimensions, and local surface curvature from 3D reconstructed MRI of the human fetal brain (N = 46). We found that cerebellar volume increased approximately 7-fold from 20 to 31 gestational weeks. The better fit of the exponential curve (R 2 = 0.96) compared to the linear curve (R 2 = 0.92) indicated acceleration in growth. Within-subject cerebellar and cerebral volumes were highly correlated (R 2 = 0.94), though the cerebellar percentage of total brain volume increased from approximately 2.4% to 3.7% (R 2 = 0.63). Right and left hemispheric volumes did not significantly differ. Transcerebellar diameter, vermal height, and vermal anterior to posterior diameter increased significantly at constant rates. From the local curvature analysis, we found that expansion along the inferior and superior aspects of the hemispheres resulted in decreased convexity, which is likely due to the physical constraints of the dura surrounding the cerebellum and the adjacent brainstem. The paired decrease in convexity along the inferior vermis and increased convexity of the medial hemisphere represents development of the paravermian fissure, which becomes more visible during this period. In this 3D morphometric analysis of the human fetal cerebellum, we have shown that cerebellar growth is accelerating at a greater pace than the cerebrum and described how cerebellar growth impacts the shape of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Streeter G. The development of the nervous system. In: Frenz K, Franklin PM, editors. Manual of human embryology. Philadelphia: Lippincott; 1912. p. 1–116.

  2. Larsell O. The development of the cerebellum in man in relation to its comparative anatomy. J Comp Neurol. 1947;87(2):85–129.

    Article  PubMed  CAS  Google Scholar 

  3. Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child. 1973;48(10):757–767.

    Article  PubMed  CAS  Google Scholar 

  4. Guihard-Costa AM, Larroche JC. Growth velocity of some fetal parameters. I. Brain weight and brain dimensions. Biol Neonate. 1992;62(5):309–316.

    Article  PubMed  CAS  Google Scholar 

  5. Rakic P, Sidman RL. Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans. J Comp Neurol. 1970;139(4):473–500.

    Article  PubMed  CAS  Google Scholar 

  6. Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–1104.

    Article  PubMed  Google Scholar 

  7. Sidman RL, Rakic P. Neuronal migration, with special reference to developing human brain: a review. Brain Res. 1973;62(1):1–35.

    Article  PubMed  CAS  Google Scholar 

  8. Laroche JC. Developmental pathology of the neonate. Amsterdam: Excerpta Medica; 1977.

  9. Larsell O, Jansen J. The comparative anatomy and histology of the cerebellum: the human cerebellum, cerebellar connections, and cerebellar cortex. Minneapolis: University of Minnesota Press; 1972.

    Google Scholar 

  10. Adamsbaum C, Moutard ML, Andre C, Merzoug V, Ferey S, Quere MP, et al. MRI of the fetal posterior fossa. Pediatr Radiol. 2005;35(2):124–140.

    Article  PubMed  Google Scholar 

  11. Triulzi F, Parazzini C, Righini A. Magnetic resonance imaging of fetal cerebellar development. Cerebellum. 2006;5(3):199–205.

    Article  PubMed  Google Scholar 

  12. Vinals F, Munoz M, Naveas R, Shalper J, Giuliano A. The fetal cerebellar vermis: anatomy and biometric assessment using volume contrast imaging in the C-plane (VCI-C). Ultrasound Obstet Gynecol. 2005;26(6):622–627.

    Article  PubMed  CAS  Google Scholar 

  13. Sherer DM, Sokolovski M, Dalloul M, Pezzullo JC, Osho JA, Abulafia O. Nomograms of the axial fetal cerebellar hemisphere circumference and area throughout gestation. Ultrasound Obstet Gynecol. 2007;29(1):32–37.

    Article  PubMed  CAS  Google Scholar 

  14. Rutten MJ, Pistorius LR, Mulder EJH, Stoutenbeek P, de Vries LS, Visser GHA. Fetal cerebellar volume and symmetry on 3-D ultrasound: volume measurement with multiplanar and vocal techniques. Ultrasound Med Biol. 2009;35(8):1284–1289.

    Article  PubMed  CAS  Google Scholar 

  15. Hatab MR, Kamourieh SW, Twickler DM. MR volume of the fetal cerebellum in relation to growth. J Magn Reson Imaging. 2008;27(4):840–845.

    Article  PubMed  Google Scholar 

  16. Tilea B, Alberti C, Adamsbaum C, Armoogum P, Oury JF, Cabrol D, et al. Cerebral biometry in fetal magnetic resonance imaging: new reference data. Ultrasound Obstet Gynecol. 2009;33(2):173–181.

    Article  PubMed  CAS  Google Scholar 

  17. Limperopoulos C, Soul JS, Gauvreau K, Huppi PS, Warfield SK, Bassan H, et al. Late gestation cerebellar growth is rapid and impeded by premature birth. Pediatrics. 2005;115(3):688–695.

    Article  PubMed  Google Scholar 

  18. Tam EWY, Miller SP, Studholme C, Chau V, Glidden D, Poskitt KJ, et al. Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth. J Pediatr. 2011;158(3):366–371.

    Article  PubMed  Google Scholar 

  19. Studholme C. Mapping fetal brain development in utero using magnetic resonance imaging: the big bang of brain mapping. Annu Rev Biomed Eng. 2011;13(1):345–368.

    Article  PubMed  CAS  Google Scholar 

  20. Scott JA, Habas PA, Kim K, Rajagopalan V, Hamzelou KS, Corbett-Detig JM, et al. Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI. Int J Dev Neurosci. 2011;29(5):529–536.

    Article  PubMed  Google Scholar 

  21. Rajagopalan V, Scott JA, Habas PA, Kim K, Corbett-Detig JM, Rousseau F, et al. Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero. J Neurosci. 2011;31(8):2878–2887.

    Article  PubMed  CAS  Google Scholar 

  22. Habas PA, Scott JA, Roosta A, Rajagopalan V, Kim K, Rousseau F, et al. Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. Cereb Cortex. in press.

  23. Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Birnbacher R, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol. 2005;26(7):1659–1667.

    PubMed  Google Scholar 

  24. Kim K, Habas PA, Rousseau F, Glenn OA, Barkovich AJ, Studholme C. Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation. IEEE Trans Med Imaging. 2010;29(1):146–158.

    Article  PubMed  Google Scholar 

  25. Lopes A, Brodlie K. Improving the robustness and accuracy of the marching cubes algorithm for isosurfacing. IEEE Trans Vis Comput Graph. 2003;9(1):16–29.

    Article  Google Scholar 

  26. Do Carmo MP. Differential geometry of curves and surfaces. Englewood Cliffs: Prentice Hall; 1976.

    Google Scholar 

  27. Studholme C, Cardenas VA. A template free approach to volumetric spatial normalization of brain anatomy. Pattern Recognit Lett. 2004;25(10):1191–1202.

    Article  Google Scholar 

  28. Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15(1):1–25.

    Article  PubMed  Google Scholar 

  29. Garel C, Chantrel E, Elmaleh M, Brisse H, Sebag G. Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst. 2003;19(7–8):422–425.

    Article  PubMed  Google Scholar 

  30. Reichel TF, Ramus RM, Caire JT, Hynan LS, Magee KP, Twickler DM. Fetal central nervous system biometry on MR imaging. AJR Am J Roentgenol. 2003;180(4):1155–1158.

    PubMed  Google Scholar 

  31. Chang CH, Chang FM, Yu CH, Ko HC, Chen HY. Assessment of fetal cerebellar volume using three-dimensional ultrasound. Ultrasound Med Biol. 2000;26(6):981–988.

    Article  PubMed  CAS  Google Scholar 

  32. Grossman R, Hoffman C, Mardor Y, Biegon A. Quantitative MRI measurements of human fetal brain development in utero. Neuroimage. 2006;33(2):463–470.

    Article  PubMed  Google Scholar 

  33. Kuklisova-Murgasova M, Aljabar P, Srinivasan L, Counsell SJ, Doria V, Serag A, et al. A dynamic 4D probabilistic atlas of the developing brain. Neuroimage. 2011;54(4):2750–2763.

    Article  PubMed  Google Scholar 

  34. Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, et al. A structural MRI study of human brain development from birth to 2 years. J Neurosci. 2008;28(47):12176–12182.

    Article  PubMed  CAS  Google Scholar 

  35. Zecevic N, Chen Y, Filipovic R. Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol. 2005;491(2):109–122.

    Article  PubMed  Google Scholar 

  36. Hansen DV, Lui JH, Parker PRL, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464(7288):554–561.

    Article  PubMed  CAS  Google Scholar 

  37. Smart IHM, Dehay C, Giroud P, Berland M, Kennedy H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex. 2002;12(1):37–53.

    Article  PubMed  Google Scholar 

  38. Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex. 2011;21(7):1674–1694.

    Article  PubMed  Google Scholar 

  39. Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K. The ontogeny of human gyrification. Cereb Cortex. 1995;5(1):56–63.

    Article  PubMed  CAS  Google Scholar 

  40. Dubois J, Benders M, Cachia A, Lazeyras F, Leuchter RHV, Sizonenko SV, et al. Mapping the early cortical folding process in the preterm newborn brain. Cereb Cortex. 2008;18(6):1444–1454.

    Article  PubMed  CAS  Google Scholar 

  41. Clouchoux C, Kudelski D, Gholipour A, Warfield SK, Viseur S, Bouyssi-Kobar M, et al. Quantitative in vivo MRI measurement of cortical development in the fetus. Brain Struct Funct. in press.

  42. Chong BW, Babcook CJ, Pang D, Ellis WG. A magnetic resonance template for normal cerebellar development in the human fetus. Neurosurgery. 1997;41(4):924–929.

    Article  PubMed  CAS  Google Scholar 

  43. Habas PA, Kim K, Corbett-Detig JM, Rousseau F, Glenn OA, Barkovich AJ, et al. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage. 2010;53(2):460–470.

    Article  PubMed  Google Scholar 

  44. Habas PA, Kim K, Rousseau F, Glenn OA, Barkovich AJ, Studholme C. Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses. Hum Brain Mapp. 2010;31(9):1348–1358.

    Article  PubMed  Google Scholar 

  45. Barkovich AJ, Millen KJ, Dobyn WB. A developmental and genetic classification for midbrain–hindbrain malformations. Brain. 2009;132(12):3199–3230.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Institutes of Health through the National Institute of Neurological Disorders and Stroke (R01 NS 061957 and R01 NS 055064), National Center for Research Resources to UCSF-CTSI (UL1 RR024131), and award to O.A.G. (K23 NS52506-03).

Conflict of interest

There are no existing or potential conflicts of interest related to the study presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia A. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, J.A., Hamzelou, K.S., Rajagopalan, V. et al. 3D Morphometric Analysis of Human Fetal Cerebellar Development. Cerebellum 11, 761–770 (2012). https://doi.org/10.1007/s12311-011-0338-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0338-2

Keywords

Navigation