Skip to main content

Advertisement

Log in

Cellular and Metabolic Origins of Flavoprotein Autofluorescence in the Cerebellar Cortex in vivo

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Flavoprotein autofluorescence imaging, an intrinsic mitochondrial signal, has proven useful for monitoring neuronal activity. In the cerebellar cortex, parallel fiber stimulation evokes a beam-like response consisting of an initial, short-duration increase in fluorescence (on-beam light phase) followed by a longer duration decrease (on-beam dark phase). Also evoked are parasagittal bands of decreased fluorescence due to molecular layer inhibition. Previous work suggests that the on-beam light phase is due to oxidative metabolism in neurons. The present study further investigated the metabolic and cellular origins of the flavoprotein signal in vivo, testing the hypotheses that the dark phase is mediated by glia activation and the inhibitory bands reflect decreased flavoprotein oxidation and increased glycolysis in neurons. Blocking postsynaptic ionotropic and metabotropic glutamate receptors abolished the on-beam light phase and the parasagittal bands without altering the on-beam dark phase. Adding glutamate transporter blockers reduced the dark phase. Replacing glucose with lactate (or pyruvate) or adding lactate to the bathing media abolished the on-beam dark phase and reduced the inhibitory bands without affecting the light phase. Blocking monocarboxylate transporters eliminated the on-beam dark phase and increased the light phase. These results confirm that the on-beam light phase is due primarily to increased oxidative metabolism in neurons. They also show that the on-beam dark phase involves activation of glycolysis in glia resulting in the generation of lactate that is transferred to neurons. Oxidative savings in neurons contributes to the decrease in fluorescence characterizing the inhibitory bands. These findings provide strong in vivo support for the astrocyte–neuron lactate shuttle hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reinert KC, Dunbar RL, Gao W, Chen G, Ebner TJ. Flavoprotein autofluorescence imaging of neuronal activation in the cerebellar cortex in vivo. J Neurophysiol. 2004;92:199–211.

    Article  PubMed  CAS  Google Scholar 

  2. Coutinho V, Mutoh H, Knopfel T. Functional topology of the mossy fibre-granule cell–Purkinje cell system revealed by imaging of intrinsic fluorescence in mouse cerebellum. Eur J Neurosci. 2004;20:740–8.

    Article  PubMed  CAS  Google Scholar 

  3. Shibuki K, Hishida R, Murakami H, Kudoh M, Kawaguchi T, Watanabe M, et al. Dynamic imaging of somatosensory cortical activity in the rat visualized by flavoprotein autofluorescence. J Physiol. 2003;549:919–27.

    Article  PubMed  CAS  Google Scholar 

  4. Shuttleworth CW, Brennan AM, Connor JA. NAD(P)H fluorescence imaging of postsynaptic neuronal activation in murine hippocampal slices. J Neurosci. 2003;23:3196–208.

    PubMed  CAS  Google Scholar 

  5. Husson TR, Mallik AK, Zhang JX, Issa NP. Functional imaging of primary visual cortex using flavoprotein autofluorescence. J Neurosci. 2007;27:8665–75.

    Article  PubMed  CAS  Google Scholar 

  6. Brennan AM, Connor JA, Shuttleworth CW. NAD(P)H fluorescence transients after synaptic activity in brain slices: predominant role of mitochondrial function. J Cereb Blood Flow Metab. 2006;26:1389–406.

    Article  PubMed  CAS  Google Scholar 

  7. Scholz R, Thurman RG, Williamson JR, Chance B, Bucher T. Flavin and pyridine nucleotide oxidation-reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem. 1969;244:2317–24.

    PubMed  CAS  Google Scholar 

  8. Koke JR, Wylie W, Wills M. Sensitivity of flavoprotein fluorescence to oxidative state in single isolated heart cells. Cytobios. 1981;32:139–45.

    PubMed  CAS  Google Scholar 

  9. Voltti H, Hassinen IE. Oxidation-reduction midpoint potentials of mitochondrial flavoproteins and their intramitochondrial localization. J Bioenerg Biomembr. 1978;10:45–58.

    Article  PubMed  CAS  Google Scholar 

  10. Duchen MR. Ca2+-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J. 1992;283(Pt 1):41–50.

    PubMed  CAS  Google Scholar 

  11. Chance B. Optical method. Annu Rev Biophys Biophys Chem. 1991;20:1–28.

    Article  PubMed  CAS  Google Scholar 

  12. Kunz WS, Kunz W. Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria. Biochim Biophys Acta. 1985;841:237–46.

    PubMed  CAS  Google Scholar 

  13. Hall CL, Kamin H. The purification and some properties of electron transfer flavoprotein and general fatty acyl coenzyme A dehydrogenase from pig liver mitochondria. J Biol Chem. 1975;250:3476–86.

    PubMed  CAS  Google Scholar 

  14. Hassinen I, Chance B. Oxidation-reduction properties of the mitochondrial flavoprotein chain. Biochem Biophys Res Commun. 1968;31:895–900.

    Article  PubMed  CAS  Google Scholar 

  15. McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U. Neuronal and astrocytic shuttle mechanisms for cytosolic-mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol. 2006;71:399–407.

    Article  PubMed  CAS  Google Scholar 

  16. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis—a mechanism coupling neuronal-activity to glucose-utilization. Proc Natl Acad Sci USA. 1994;91:10625–9.

    Article  PubMed  CAS  Google Scholar 

  17. Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94:1–14.

    Article  PubMed  CAS  Google Scholar 

  18. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999;343:281–99.

    Article  PubMed  CAS  Google Scholar 

  19. Juel C, Grunnet L, Holse M, Kenworthy S, Sommer V, Wulff T. Reversibility of exercise-induced translocation of Na+–K+ pump subunits to the plasma membrane in rat skeletal muscle. Pflugers Arch. 2001;443:212–7.

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi S, Driscoll BF, Law MJ, Sokoloff L. Role of sodium and potassium-ions in regulation of glucose-metabolism in cultured astroglia. Proc Natl Acad Sci USA. 1995;92:4616–20.

    Article  PubMed  CAS  Google Scholar 

  21. Pellerin L, Magistretti PJ. Food for thought: challenging the dogmas. J Cereb Blood Flow Metab. 2003;23:1282–6.

    Article  PubMed  Google Scholar 

  22. Kasischke KA, Vishwasrao HD, Fisher PJ, Zipfel WR, Webb WW. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science. 2004;305:99–103.

    Article  PubMed  CAS  Google Scholar 

  23. Magistretti PJ. Cellular bases of functional brain imaging: insights from neuron–glia metabolic coupling. Brain Res. 2000;886:108–12.

    Article  PubMed  CAS  Google Scholar 

  24. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55:1251–62.

    Article  PubMed  Google Scholar 

  25. Pellerin L, Magistretti PJ. Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist. 2004;10:53–62.

    Article  PubMed  CAS  Google Scholar 

  26. Hertz L. The astrocyte–neuron lactate shuttle: a challenge of a challenge. J Cereb Blood Flow Metab. 2004;24:1241–8.

    Article  PubMed  Google Scholar 

  27. Chih CP, Roberts Jr EL. Energy substrates for neurons during neural activity: a critical review of the astrocyte–neuron lactate shuttle hypothesis. J Cereb Blood Flow Metab. 2003;23:1263–81.

    Article  PubMed  CAS  Google Scholar 

  28. Mangia S, Giove F, Bianciardi M, Di Salle F, Garreffa G, Maraviglia B. Issues concerning the construction of a metabolic model for neuronal activation. J Neurosci Res. 2003;71:463–7.

    Article  PubMed  CAS  Google Scholar 

  29. Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci. 1999;354:1155–63.

    Article  PubMed  CAS  Google Scholar 

  30. Attwell D, Laughlin SB. An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab. 2001;21:1133–45.

    Article  PubMed  CAS  Google Scholar 

  31. Attwell D, Iadecola C. The neural basis of functional brain imaging signals. Trends Neurosci. 2002;25:621–5.

    Article  PubMed  CAS  Google Scholar 

  32. Eccles JC, Ito M, Szentagothai J. The Cerebellum as a Neuronal Machine. ; Berlin: Springer, 1967

  33. Gao W, Chen G, Reinert KC, Ebner TJ. Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. J Neurosci. 2006;26:8377–87.

    Article  PubMed  CAS  Google Scholar 

  34. Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet. 2006;38:758–69.

    Article  PubMed  CAS  Google Scholar 

  35. Reinert KC, Gao W, Chen G, Ebner TJ. Flavoprotein autofluorescence imaging in the cerebellar cortex in vivo. J Neurosci Res. 2007;85:3221–32.

    Article  PubMed  CAS  Google Scholar 

  36. Chouinard PA, Paus T. The primary motor and premotor areas of the human cerebral cortex. Neuroscientist. 2006;12:143–52.

    Article  PubMed  Google Scholar 

  37. Grandes P, Mateos JM, Ruegg D, Kuhn R, Knopfel T. Differential cellular localization of three splice variants of the mGluR1 metabotropic glutamate receptor in rat cerebellum. Neuroreport. 1994;5:2249–52.

    Article  PubMed  CAS  Google Scholar 

  38. Mateos JM, Benitez R, Elezgarai I, Azkue JJ, Lazaro E, Osorio A, et al. Immunolocalization of the mGluR1b splice variant of the metabotropic glutamate receptor 1 at parallel fiber–Purkinje cell synapses in the rat cerebellar cortex. J Neurochem. 2000;74:1301–9.

    Article  PubMed  CAS  Google Scholar 

  39. Ackermann RF, Finch DM, Babb TL, Engel Jr J. Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J Neurosci. 1984;4:251–64.

    PubMed  CAS  Google Scholar 

  40. Nudo RJ, Masterton RB. Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system. J Comp Neurol. 1986;245:553–65.

    Article  PubMed  CAS  Google Scholar 

  41. Chatton JY, Pellerin L, Magistretti PJ. GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc Natl Acad Sci USA. 2003;100:12456–61.

    Article  PubMed  CAS  Google Scholar 

  42. Sirotin YB, Das A. Spatial relationship between flavoprotein fluorescence and the hemodynamic response in the primary visual cortex of alert macaque monkeys. Front Neuroenergetics. 2010;2:6.

    PubMed  CAS  Google Scholar 

  43. Chen G, Popa LS, Wang X, Gao W, Barnes J, Hendrix CM, et al. Low frequency oscillations in the cerebellar cortex of the tottering mouse. J Neurophysiol. 2009;101:234–45.

    Article  PubMed  Google Scholar 

  44. Barton CN, Braunberg RC, Friedman L. Nonlinear statistical models for the joint action of toxins. Biometrics. 1993;49:95–105.

    Article  PubMed  CAS  Google Scholar 

  45. Knopfel T, Grandes P. Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. Cerebellum. 2002;1:19–26.

    Article  PubMed  CAS  Google Scholar 

  46. Finch EA, Augustine GJ. Local calcium signaling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature. 1998;396:753–6.

    Article  PubMed  CAS  Google Scholar 

  47. Konnerth A, Llano I, Armstrong CM. Synaptic currents in cerebellar Purkinje cells. Proc Natl Acad Sci USA. 1990;87:2662–5.

    Article  PubMed  CAS  Google Scholar 

  48. Wang X, Chen G, Gao W, Ebner TJ. Long-term potentiation of the responses to parallel fiber stimulation in mouse cerebellar cortex in vivo. Neurosci. 2009;162:713–22.

    Article  CAS  Google Scholar 

  49. Loaiza A, Porras OH, Barros LF. Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci. 2003;23:7337–42.

    PubMed  CAS  Google Scholar 

  50. Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, et al. dl-Threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol. 1998;53:195–201.

    PubMed  CAS  Google Scholar 

  51. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci. 1998;18:3606–19.

    PubMed  CAS  Google Scholar 

  52. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105.

    Article  PubMed  CAS  Google Scholar 

  53. Carter AG, Regehr WG. Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. J Neurosci. 2000;20:4423–34.

    PubMed  CAS  Google Scholar 

  54. Schurr A, Payne RS, Miller JJ, Rigor BM. Glia are the main source of lactate utilized by neurons for recovery of function posthypoxia. Brain Res. 1997;774:221–4.

    Article  PubMed  CAS  Google Scholar 

  55. Yoshioka K, Nisimaru N, Yanai S, Shimoda H, Yamada K. Characteristics of monocarboxylates as energy substrates other than glucose in rat brain slices and the effect of selective glial poisoning - a P-31 NMR study. Neurosci Res. 2000;36:215–26.

    Article  PubMed  CAS  Google Scholar 

  56. Schurr A, Miller JJ, Payne RS, Rigor BM. An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci. 1999;19:34–9.

    PubMed  CAS  Google Scholar 

  57. Hu Y, Wilson GS. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J Neurochem. 1997;69:1484–90.

    Article  PubMed  CAS  Google Scholar 

  58. Berg J, Tymoczko J, Stryer L. Maintaining redox balance: the diverse fate of pyruvate. In: Berg JM, editor. Biochemistry. New York: Freeman; 2002.

    Google Scholar 

  59. Cater HL, Benham CD, Sundstrom LE. Neuroprotective role of monocarboxylate transport during glucose deprivation in slice cultures of rat hippocampus. J Physiol. 2001;531:459–66.

    Article  PubMed  CAS  Google Scholar 

  60. Tanaka M, Nakamura F, Mizokawa S, Matsumura A, Matsumura K, Murata T, et al. Role of lactate in the brain energy metabolism: revealed by bioradiography. Neurosci Res. 2004;48:13–20.

    Article  PubMed  CAS  Google Scholar 

  61. Llano DA, Theyel BB, Mallik AK, Sherman SM, Issa NP. Rapid and sensitive mapping of long-range connections in vitro using flavoprotein autofluorescence imaging combined with laser photostimulation. J Neurophysiol. 2009;101:3325–40.

    Article  PubMed  CAS  Google Scholar 

  62. Schummers J, Yu H, Sur M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science. 2008;320:1638–43.

    Article  PubMed  CAS  Google Scholar 

  63. Ramirez BG, Rodrigues TB, Violante IR, Cruz F, Fonseca LL, Ballesteros P, et al. Kinetic properties of the redox switch/redox coupling mechanism as determined in primary cultures of cortical neurons and astrocytes from rat brain. J Neurosci Res. 2007;85:3244–53.

    Article  PubMed  CAS  Google Scholar 

  64. Zielke HR, Zielke CL, Baab PJ. Oxidation of (14)C-labeled compounds perfused by microdialysis in the brains of free-moving rats. J Neurosci Res. 2007;85:3145–9.

    Article  PubMed  CAS  Google Scholar 

  65. Waagepetersen HS, Bakken IJ, Larsson OM, Sonnewald U, Schousboe A. Comparison of lactate and glucose metabolism in cultured neocortical neurons and astrocytes using 13C-NMR spectroscopy. Dev Neurosci. 1998;20:310–20.

    Article  PubMed  CAS  Google Scholar 

  66. Schurr A, Payne RS. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiological study. Neuroscience. 2007;147:613–9.

    Article  PubMed  CAS  Google Scholar 

  67. Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci. 2006;24:1687–94.

    Article  PubMed  Google Scholar 

  68. Muller T, Moller T, Berger T, Schnitzer J, Kettenmann H. Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science. 1992;256:1563–6.

    Article  PubMed  CAS  Google Scholar 

  69. Muller T, Grosche J, Ohlemeyer C, Kettenmann H. NMDA-activated currents in Bergmann glial cells. Neuroreport. 1993;4:671–4.

    Article  PubMed  CAS  Google Scholar 

  70. Luque JM, Richards JG. Expression of NMDA 2B receptor subunit mRNA in Bergmann glia. Glia. 1995;13:228–32.

    Article  PubMed  CAS  Google Scholar 

  71. Aguilera P, Ortega A. Stat3 participates in the metabotropic glutamate signaling pathway in Bergmann glial cells. Neurochem Res. 1999;24:981–6.

    Article  PubMed  CAS  Google Scholar 

  72. Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H. Microdomains for neuron–glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci. 1999;2:139–43.

    Article  PubMed  CAS  Google Scholar 

  73. Kirischuk S, Kettenmann H, Verkhratsky A. Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells. Pflugers Arch. 2007;454:245–52.

    Article  PubMed  CAS  Google Scholar 

  74. Bennay M, Langer J, Meier SD, Kafitz KW, Rose CR. Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission. Glia. 2008;56:1138–49.

    Article  PubMed  Google Scholar 

  75. Matyash V, Filippov V, Mohrhagen K, Kettenmann H. Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol Cell Neurosci. 2001;18:664–70.

    Article  PubMed  CAS  Google Scholar 

  76. Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, et al. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA. 1991;88:5829–31.

    Article  PubMed  CAS  Google Scholar 

  77. Mangia S, Tkac I, Gruetter R, van de Moortele PF, Maraviglia B, Ugurbil K. Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab. 2007;27:1055–63.

    PubMed  CAS  Google Scholar 

  78. Caesar K, Hashemi P, Douhou A, Bonvento G, Boutelle MG, Walls AB, et al. Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vivo. J Physiol. 2008;586:1337–49.

    Article  PubMed  CAS  Google Scholar 

  79. Abe T, Takahashi S, Suzuki N. Oxidative metabolism in cultured rat astroglia: effects of reducing the glucose concentration in the culture medium and of d-aspartate or potassium stimulation. J Cereb Blood Flow Metab. 2006;26:153–60.

    Article  PubMed  CAS  Google Scholar 

  80. Peng L, Juurlink BH, Hertz L. Pharmacological and developmental evidence that the potassium-induced stimulation of deoxyglucose uptake in astrocytes is a metabolic manifestation of increased Na(+)-K(+)-ATPase activity. Dev Neurosci. 1996;18:353–9.

    Article  PubMed  CAS  Google Scholar 

  81. Kocsis JD, Malenka RC, Waxman SG. Effects of extracellular potassium concentration on the excitability of the parallel fibres of the rat cerebellum. J Physiol. 1983;334:225–44.

    PubMed  CAS  Google Scholar 

  82. Nicholson C, Bruggencate GT, Stockle H, Steinberg R. Calcium and potassium changes in extracellular microenvironment of cat cerebellar cortex. J Neurophysiol. 1978;41:1026–39.

    PubMed  CAS  Google Scholar 

  83. Hertz L, Peng L, Dienel GA. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab. 2007;27:219–49.

    Article  PubMed  CAS  Google Scholar 

  84. Wolff J, Chao T. Cytoarchitectonics of non-neuronal cells in the central nervous system. In: Hertz L (ed.), Non-neuronal Cells of the Nervous System: Function and Dysfunction. Elsevier; 2004.

  85. Hirrlinger J, Hulsmann S, Kirchhoff F. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur J Neurosci. 2004;20:2235–9.

    Article  PubMed  Google Scholar 

  86. Derouiche A, Frotscher M. Peripheral astrocyte processes: monitoring by selective immunostaining for the actin-binding ERM proteins. Glia. 2001;36:330–41.

    Article  PubMed  CAS  Google Scholar 

  87. Grosche J, Kettenmann H, Reichenbach A. Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res. 2002;68:138–49.

    Article  PubMed  CAS  Google Scholar 

  88. Palay SL. Structural basis for neural action. In: Brazier M, editor. Brain function. Los Angeles: University of California Press; 1964. p. 59–107.

    Google Scholar 

  89. Bertoni-Freddari C, Fattoretti P, Casoli T, Di Stefano G, Solazzi M, Meier-Ruge W. Quantitative cytochemical mapping of mitochondrial enzymes in rat cerebella. Micron. 2001;32:405–10.

    Article  PubMed  CAS  Google Scholar 

  90. Hausser M, Clark BA. Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 1997;19:665–78.

    Article  PubMed  CAS  Google Scholar 

  91. Tohmi M, Kitaura H, Komagata S, Kudoh M, Shibuki K. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex. J Neurosci. 2006;26:11775–85.

    Article  PubMed  CAS  Google Scholar 

  92. Jongen JL, Pederzani T, Koekkoek SK, Shapiro J, Van der BJ, De Zeeuw CI, et al. Autofluorescent flavoprotein imaging of spinal nociceptive activity. J Neurosci. 2010;30:4081–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Lijuan Zhou for animal preparation, Michael McPhee for graphics, Claudia Hendrix for statistical advice, and Kathy Easthagen and Kris Bettin for manuscript preparation. This work was supported in part by NIH grant R01-NS048944 and a grant from the Bob Allison Ataxia Research Center.

Conflicts of Interest

There are no current or potential conflicts of interest for the six authors, Drs. Kenneth Reinert, Wangcai Gao, Gang Chen, Xinming Wang, Yu-Ping Peng, and Timothy Ebner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Ebner.

Additional information

Kenneth C. Reinert and Wangcai Gao contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinert, K.C., Gao, W., Chen, G. et al. Cellular and Metabolic Origins of Flavoprotein Autofluorescence in the Cerebellar Cortex in vivo. Cerebellum 10, 585–599 (2011). https://doi.org/10.1007/s12311-011-0278-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0278-x

Keywords

Navigation