Skip to main content

Casting Light on the Role of Glial Cells in Brain Function

  • Chapter
Optogenetics
  • 2263 Accesses

Abstract

To understand the role of glia in brain function, specific manipulation of glial cell activity is required. Optogenetics was originally introduced as a tool that can manipulate cell membrane potential with light illumination, and its use was mostly limited to neuronal activity manipulation. Depolarization or hyperpolarization by itself did not seem likely to have much effect on glial cell function as these cells largely lack voltage-gated ion channels. A mostly unrecognized fact is that the main cation that crosses the plasma membrane upon light activation of channelrhodopsin-2 or archaerhodopsin is proton. Thus, these optogenetic tools can be regarded as tools that can manipulate intracellular pH. Not only Ca2+ but also H+, Na+ and other intracellular ionic concentrations can dynamically change upon cell activity and can have a profound effect on cell function. Presented here is a study that shows that glutamate release from glia is triggered by intracellular acidification. The released glutamate from glia can have a profound effect on higher-ordered brain functions such as learning and behavior. It is also shown that rampant glial cell activity occurs upon pathological conditions, such as ischemia, and extreme intracellular glial acidification leads to excess glial glutamate release and excitotoxicity. Optogenetics will likely become an essential tool to study the function of cells previously categorized as ‘non-excitable’ cells such as the glia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbour B, Häusser M (1997) Intersynaptic diffusion of neurotransmitter. Trends Neurosci 20:377–384

    Article  CAS  PubMed  Google Scholar 

  • Baude A, Nusser Z, Roberts JD et al (1993) The metabotropic glutamate receptor (mGluR1 alpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    Article  CAS  PubMed  Google Scholar 

  • Beierlein M, Regehr WG (2006) Brief bursts of parallel fiber activity trigger calcium signals in Bergmann glia. J Neurosci 26:6958–6967

    Article  CAS  PubMed  Google Scholar 

  • Beppu K, Sasaki T, Tanaka KF et al (2014) Optogenetic countering of glial acidosis suppresses glial glutamate release and ischemic brain damage. Neuron 81:314–320

    Article  CAS  PubMed  Google Scholar 

  • Berndt A, Yizhar O, Gunaydin LA et al (2009) Bi-stable neural state switches. Nat Neurosci 12:229–234

    Article  CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Budisantoso T, Matsui K, Kamasawa N et al (2012) Mechanisms underlying signal filtering at a multisynapse contact. J Neurosci 32:2357–2376

    Article  CAS  PubMed  Google Scholar 

  • Budisantoso T, Harada H, Kamasawa N et al (2013) Evaluation of glutamate concentration transient in the synaptic cleft of the rat calyx of held. J Physiol 591:219–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavelier P, Attwell D (2005) Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol 564:397–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • García-Marín V, García-López P, Freire M (2007) Cajal’s contributions to glia research. Trends Neurosci 30:479–487

    Article  PubMed  Google Scholar 

  • Kanemaru K, Sekiya H, Xu M et al (2014) In vivo visualization of subtle, transient, and local activity of astrocytes using an ultrasensitive Ca(2+) indicator. Cell Rep 8:311–318

    Article  CAS  PubMed  Google Scholar 

  • Kuffler SW, Nicholls JG, Orkand RK (1966) Physiological properties of glial cells in the central nervous system of amphibia. J Neurophysiol 29:768–787

    CAS  PubMed  Google Scholar 

  • Liu HT, Akita T, Shimizu T et al (2009) Bradykinin-induced astrocyte-neuron signalling: glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels. J Physiol 587:2197–2209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsui K, Jahr CE (2003) Ectopic release of synaptic vesicles. Neuron 40:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Jahr CE (2006) Exocytosis unbound. Curr Opin Neurobiol 16:305–311

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Hosoi N, Tachibana M (1998) Excitatory synaptic transmission in the inner retina: paired recordings of bipolar cells and neurons of the ganglion cell layer. J Neurosci 18:4500–4510

    CAS  PubMed  Google Scholar 

  • Nishida H, Okabe S (2007) Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 27:331–340

    Article  CAS  PubMed  Google Scholar 

  • Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926

    Article  CAS  PubMed  Google Scholar 

  • Piet R, Jahr CE (2007) Glutamatergic and purinergic receptor-mediated calcium transients in Bergmann glial cells. J Neurosci 27:4027–4035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki T, Beppu K, Tanaka KF et al (2012) Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proc Natl Acad Sci U S A 109:20720–20725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320:1638–1643

    Article  CAS  PubMed  Google Scholar 

  • Tanaka KF, Matsui K, Sasaki T et al (2012) Expanding the repertoire of optogenetically targeted cells with an enhanced gene expression system. Cell Rep 2:397–406

    Article  CAS  PubMed  Google Scholar 

  • Thrane AS, Rangroo Thrane V, Zeppenfeld D et al (2012) General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proc Natl Acad Sci U S A 109:18974–18979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trussell LO, Zhang S, Raman IM (1993) Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron 10:1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Wake H, Moorhouse AJ, Jinno S et al (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29:3974–3980

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Matsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Matsui, K. (2015). Casting Light on the Role of Glial Cells in Brain Function. In: Yawo, H., Kandori, H., Koizumi, A. (eds) Optogenetics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55516-2_22

Download citation

Publish with us

Policies and ethics