Skip to main content
Log in

Inositol 1,4,5-Trisphosphate Receptor-Mediated Calcium Release in Purkinje Cells: From Molecular Mechanism to Behavior

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The inositol 1,4,5-trisphosphate (IP3) receptor is highly expressed in cerebellar Purkinje cells and mediates conspicuous calcium release from intracellular calcium stores. Receptor stimulation, such as through mGluR1, activates the Gq–PLC pathway, which leads to IP3-induced calcium release and subsequent cellular responses, including cerebellar long-term depression in Purkinje cells. Recent studies have demonstrated the regulatory mechanisms of IP3 receptor, revealing activation via IP3 and Ca2+, inactivation via high concentrations of Ca2+, and modulation by various proteins that bind to the IP3 receptor. Novel calcium imaging techniques and caged compounds provide analysis of calcium signals at the single spine level in relation to the induction of long-term depression. Genetically encoded indicators for calcium or IP3 could provide alternate Ca2+ or IP3 imaging, in particular, for in vivo observations. IP3-induced calcium release participates in early development of dendritic branch formation, and loss-of-function mutations or hyper-activation could result various diseases. The IP3 receptor plays a central role in calcium signaling in Purkinje cells, affecting a wide variety of cellular functions, including development, plasticity, maintenance of synaptic functions, and cerebellar motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11–21.

    Article  PubMed  CAS  Google Scholar 

  2. Streb H, Irvine RF, Berridge MJ, Schulz I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature. 1983;306:67–9.

    Article  PubMed  CAS  Google Scholar 

  3. Burgess GM et al. The second messenger linking receptor activation to internal Ca release in liver. Nature. 1984;309:63–6.

    Article  PubMed  CAS  Google Scholar 

  4. Burgess GM et al. Inositol 1,4,5-trisphosphate may be a signal for f-Met-Leu-Phe-induced intracellular Ca mobilisation in human leucocytes (HL-60 cells). FEBS Lett. 1984;176:193–6.

    Article  PubMed  CAS  Google Scholar 

  5. Berridge MJ, Heslop JP, Irvine RF, Brown KD. Inositol trisphosphate formation and calcium mobilization in Swiss 3 T3 cells in response to platelet-derived growth factor. Biochem J. 1984;222:195–201.

    PubMed  CAS  Google Scholar 

  6. Prentki M et al. Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature. 1984;309:562–4.

    Article  PubMed  CAS  Google Scholar 

  7. Biden TJ, Prentki M, Irvine RF, Berridge MJ, Wollheim CB. Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells. Biochem J. 1984;223:467–73.

    PubMed  CAS  Google Scholar 

  8. Fein A, Payne R, Corson DW, Berridge MJ, Irvine RF. Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature. 1984;311:157–60.

    Article  PubMed  CAS  Google Scholar 

  9. Brown JE et al. Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature. 1984;311:160–3.

    Article  PubMed  CAS  Google Scholar 

  10. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993;361:315–25.

    Article  PubMed  CAS  Google Scholar 

  11. Worley PF, Baraban JM, Colvin JS, Snyder SH. Inositol trisphosphate receptor localization in brain: variable stoichiometry with protein kinase C. Nature. 1987;325:159–61.

    Article  PubMed  CAS  Google Scholar 

  12. Worley PF, Baraban JM, Snyder SH. Inositol 1,4,5-trisphosphate receptor binding: autoradiographic localization in rat brain. J Neurosci. 1989;9:339–46.

    PubMed  CAS  Google Scholar 

  13. Supattapone S, Worley PF, Baraban JM, Snyder SH. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem. 1988;263:1530–4.

    PubMed  CAS  Google Scholar 

  14. Mullen RJ, Eicher EM, Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA. 1976;73:208–12.

    Article  PubMed  CAS  Google Scholar 

  15. Mikoshiba K, Okano H, Tsukada Y. P400 protein characteristic to Purkinje cells and related proteins in cerebella from neuropathological mutant mice: autoradiographic study by 14 C-leucine and phosphorylation. Dev Neurosci. 1985;7:179–87.

    Article  PubMed  CAS  Google Scholar 

  16. Groswald DE, Kelly PT. Evidence that a cerebellum-enriched, synaptic junction glycoprotein is related to fodrin and resists extraction with triton in a calcium-dependent manner. J Neurochem. 1984;42:534–46.

    Article  PubMed  CAS  Google Scholar 

  17. Walaas SI, Nairn AC, Greengard P. PCPP-260, a Purkinje cell-specific cyclic AMP-regulated membrane phosphoprotein of Mr 260,000. J Neurosci. 1986;6:954–61.

    PubMed  CAS  Google Scholar 

  18. Furuichi T et al. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature. 1989;342:32–8.

    Article  PubMed  CAS  Google Scholar 

  19. Maeda N, Niinobe M, Mikoshiba K. A cerebellar Purkinje cell marker P400 protein is an inositol 1,4,5-trisphosphate (InsP3) receptor protein. Purification and characterization of InsP3 receptor complex. EMBO J. 1990;9:61–7.

    PubMed  CAS  Google Scholar 

  20. Miyawaki A, Furuichi T, Maeda N, Mikoshiba K. Expressed cerebellar-type inositol 1,4,5-trisphosphate receptor, P400, has calcium release activity in a fibroblast L cell line. Neuron. 1990;5:11–8.

    Article  PubMed  CAS  Google Scholar 

  21. Sudhof TC, Newton CL, Archer 3rd BT, Ushkaryov YA, Mignery GA. Structure of a novel InsP3 receptor. EMBO J. 1991;10:3199–206.

    PubMed  CAS  Google Scholar 

  22. Ross CA, Danoff SK, Schell MJ, Snyder SH, Ullrich A. Three additional inositol 1,4,5-trisphosphate receptors: molecular cloning and differential localization in brain and peripheral tissues. Proc Natl Acad Sci USA. 1992;89:4265–9.

    Article  PubMed  CAS  Google Scholar 

  23. Iwai M et al. Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. J Biol Chem. 2005;280:10305–17.

    Article  PubMed  CAS  Google Scholar 

  24. Kuwajima G, Futatsugi A, Niinobe M, Nakanishi S, Mikoshiba K. Two types of ryanodine receptors in mouse brain: skeletal muscle type exclusively in Purkinje cells and cardiac muscle type in various neurons. Neuron. 1992;9:1133–42.

    Article  PubMed  CAS  Google Scholar 

  25. Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995;128:893–904.

    Article  PubMed  CAS  Google Scholar 

  26. Emptage NJ, Reid CA, Fine A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron. 2001;29:197–208.

    Article  PubMed  CAS  Google Scholar 

  27. Carter AG, Vogt KE, Foster KA, Regehr WG. Assessing the role of calcium-induced calcium release in short-term presynaptic plasticity at excitatory central synapses. J Neurosci. 2002;22:21–8.

    PubMed  CAS  Google Scholar 

  28. Futatsugi A et al. Facilitation of NMDAR-independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron. 1999;24:701–13.

    Article  PubMed  CAS  Google Scholar 

  29. Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K. Calcium stores regulate the polarity and input specificity of synaptic modification. Nature. 2000;408:584–8.

    Article  PubMed  CAS  Google Scholar 

  30. Yoshikawa F et al. Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1996;271:18277–84.

    Article  PubMed  CAS  Google Scholar 

  31. Yoshikawa F et al. High efficient expression of the functional ligand binding site of the inositol 1,4,5-triphosphate receptor in Escherichia coli. Biochem Biophys Res Commun. 1999;257:792–7.

    Article  PubMed  CAS  Google Scholar 

  32. Iwai M, Michikawa T, Bosanac I, Ikura M, Mikoshiba K. Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J Biol Chem. 2007;282:12755–64.

    Article  PubMed  CAS  Google Scholar 

  33. Hamada K, Miyata T, Mayanagi K, Hirota J, Mikoshiba K. Two-state conformational changes in inositol 1,4,5-trisphosphate receptor regulated by calcium. J Biol Chem. 2002;277:21115–8.

    Article  PubMed  CAS  Google Scholar 

  34. Jiang QX, Thrower EC, Chester DW, Ehrlich BE, Sigworth FJ. Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 A resolution. EMBO J. 2002;21:3575–81.

    Article  PubMed  CAS  Google Scholar 

  35. Hamada K, Terauchi A, Mikoshiba K. Three-dimensional rearrangements within inositol 1,4,5-trisphosphate receptor by calcium. J Biol Chem. 2003;278:52881–9.

    Article  PubMed  CAS  Google Scholar 

  36. da Fonseca PC, Morris SA, Nerou EP, Taylor CW, Morris EP. Domain organization of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis. Proc Natl Acad Sci USA. 2003;100:3936–41.

    Article  PubMed  CAS  Google Scholar 

  37. Serysheva II et al. Structure of the type 1 inositol 1,4,5-trisphosphate receptor revealed by electron cryomicroscopy. J Biol Chem. 2003;278:21319–22.

    Article  PubMed  CAS  Google Scholar 

  38. Sato C et al. Inositol 1,4,5-trisphosphate receptor contains multiple cavities and L-shaped ligand-binding domains. J Mol Biol. 2004;336:155–64.

    Article  PubMed  CAS  Google Scholar 

  39. Bosanac I et al. Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature. 2002;420:696–700.

    Article  PubMed  CAS  Google Scholar 

  40. Bosanac I et al. Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell. 2005;17:193–203.

    Article  PubMed  CAS  Google Scholar 

  41. Bosanac I, Michikawa T, Mikoshiba K, Ikura M. Structural insights into the regulatory mechanism of IP3 receptor. Biochim Biophys Acta. 2004;1742:89–102.

    Article  PubMed  CAS  Google Scholar 

  42. Chan J et al. Ligand-induced conformational changes via flexible linkers in the amino-terminal region of the inositol 1,4,5-trisphosphate receptor. J Mol Biol. 2007;373:1269–80.

    Article  PubMed  CAS  Google Scholar 

  43. Iino M. Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol. 1990;95:1103–22.

    Article  PubMed  CAS  Google Scholar 

  44. Bezprozvanny I, Watras J, Ehrlich BE. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991;351:751–4.

    Article  PubMed  CAS  Google Scholar 

  45. Finch EA, Turner TJ, Goldin SM. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science. 1991;252:443–6.

    Article  PubMed  CAS  Google Scholar 

  46. Taylor CW, Laude AJ. IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium. 2002;32:321–34.

    Article  PubMed  CAS  Google Scholar 

  47. De Young GW, Keizer J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proc Natl Acad Sci USA. 1992;89:9895–9.

    Article  PubMed  Google Scholar 

  48. Li YX, Rinzel J. Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism. J Theor Biol. 1994;166:461–73.

    Article  PubMed  CAS  Google Scholar 

  49. Choe, C.U. & Ehrlich, B.E. The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. Sci STKE 2006, re15 (2006)

  50. Mikoshiba K. IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem. 2007;102:1426–46.

    Article  PubMed  CAS  Google Scholar 

  51. Michikawa T et al. Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron. 1999;23:799–808.

    Article  PubMed  CAS  Google Scholar 

  52. Missiaen L et al. The bell-shaped Ca2+ dependence of the inositol 1,4, 5-trisphosphate-induced Ca2+ release is modulated by Ca2+/calmodulin. J Biol Chem. 1999;274:13748–51.

    Article  PubMed  CAS  Google Scholar 

  53. Adkins CE et al. Ca2+−calmodulin inhibits Ca2+ release mediated by type-1, -2 and −3 inositol trisphosphate receptors. Biochem J. 2000;345(Pt 2):357–63.

    Article  PubMed  CAS  Google Scholar 

  54. Kasri NN et al. The N-terminal Ca2+−independent calmodulin-binding site on the inositol 1,4,5-trisphosphate receptor is responsible for calmodulin inhibition, even though this inhibition requires Ca2+. Mol Pharmacol. 2004;66:276–84.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang X, Joseph SK. Effect of mutation of a calmodulin binding site on Ca2+ regulation of inositol trisphosphate receptors. Biochem J. 2001;360:395–400.

    Article  PubMed  CAS  Google Scholar 

  56. Nosyreva E et al. The high-affinity calcium[bond]calmodulin-binding site does not play a role in the modulation of type 1 inositol 1,4,5-trisphosphate receptor function by calcium and calmodulin. Biochem J. 2002;365:659–67.

    PubMed  CAS  Google Scholar 

  57. Miyakawa T et al. Ca(2+)-sensor region of IP(3) receptor controls intracellular Ca(2+) signaling. EMBO J. 2001;20:1674–80.

    Article  PubMed  CAS  Google Scholar 

  58. Ando H, Mizutani A, Matsu-ura T, Mikoshiba K. IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem. 2003;278:10602–12.

    Article  PubMed  CAS  Google Scholar 

  59. Ando H et al. IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell. 2006;22:795–806.

    Article  PubMed  CAS  Google Scholar 

  60. Cameron AM et al. FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400–1401) and anchors calcineurin to this FK506-like domain. J Biol Chem. 1997;272:27582–8.

    Article  PubMed  CAS  Google Scholar 

  61. Hirota J, Ando H, Hamada K, Mikoshiba K. Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J. 2003;372:435–41.

    Article  PubMed  CAS  Google Scholar 

  62. Patterson RL, van Rossum DB, Barrow RK, Snyder SH. RACK1 binds to inositol 1,4,5-trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci U S A. 2004;101:2328–32.

    Article  PubMed  CAS  Google Scholar 

  63. Tu JC et al. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron. 1998;21:717–26.

    Article  PubMed  CAS  Google Scholar 

  64. Yang J et al. Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca(2+) release channels. Proc Natl Acad Sci U S A. 2002;99:7711–6.

    Article  PubMed  CAS  Google Scholar 

  65. Schlecker C et al. Neuronal calcium sensor-1 enhancement of InsP3 receptor activity is inhibited by therapeutic levels of lithium. J Clin Invest. 2006;116:1668–74.

    Article  PubMed  CAS  Google Scholar 

  66. Zhang S et al. Protein 4.1 N is required for translocation of inositol 1,4,5-trisphosphate receptor type 1 to the basolateral membrane domain in polarized Madin-Darby canine kidney cells. J Biol Chem. 2003;278:4048–56.

    Article  PubMed  CAS  Google Scholar 

  67. Maximov A, Tang TS, Bezprozvanny I. Association of the type 1 inositol (1,4,5)-trisphosphate receptor with 4.1 N protein in neurons. Mol Cell Neurosci. 2003;22:271–83.

    Article  PubMed  CAS  Google Scholar 

  68. Higo T et al. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell. 2005;120:85–98.

    Article  PubMed  CAS  Google Scholar 

  69. Yoo SH, Jeon CJ. Inositol 1,4,5-trisphosphate receptor/Ca2+ channel modulatory role of chromogranin A, a Ca2+ storage protein of secretory granules. J Biol Chem. 2000;275:15067–73.

    Article  PubMed  CAS  Google Scholar 

  70. Thrower EC, Park HY, So SH, Yoo SH, Ehrlich BE. Activation of the inositol 1,4,5-trisphosphate receptor by the calcium storage protein chromogranin A. J Biol Chem. 2002;277:15801–6.

    Article  PubMed  CAS  Google Scholar 

  71. Thrower EC et al. A functional interaction between chromogranin B and the inositol 1,4,5-trisphosphate receptor/Ca2+ channel. J Biol Chem. 2003;278:49699–706.

    Article  PubMed  CAS  Google Scholar 

  72. Kawaai K et al. 80K-H interacts with inositol 1,4,5-trisphosphate (IP3) receptors and regulates IP3-induced calcium release activity. J Biol Chem. 2009;284:372–80.

    Article  PubMed  CAS  Google Scholar 

  73. Supattapone S et al. Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci U S A. 1988;85:8747–50.

    Article  PubMed  CAS  Google Scholar 

  74. Nakade S, Rhee SK, Hamanaka H, Mikoshiba K. Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homotetrameric inositol 1,4,5-trisphosphate receptor (type I) increases Ca2+ flux in reconstituted lipid vesicles. J Biol Chem. 1994;269:6735–42.

    PubMed  CAS  Google Scholar 

  75. Tang TS, Tu H, Wang Z, Bezprozvanny I. Modulation of type 1 inositol (1,4,5)-trisphosphate receptor function by protein kinase a and protein phosphatase 1alpha. J Neurosci. 2003;23:403–15.

    PubMed  CAS  Google Scholar 

  76. Tang TS et al. Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron. 2003;39:227–39.

    Article  PubMed  CAS  Google Scholar 

  77. Bezprozvanny I, Hayden MR. Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun. 2004;322:1310–7.

    Article  PubMed  CAS  Google Scholar 

  78. Tang TS et al. HAP1 facilitates effects of mutant huntingtin on inositol 1,4,5-trisphosphate-induced Ca release in primary culture of striatal medium spiny neurons. Eur J Neurosci. 2004;20:1779–87.

    Article  PubMed  Google Scholar 

  79. Leissring MA, Paul BA, Parker I, Cotman CW, LaFerla FM. Alzheimer's presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J Neurochem. 1999;72:1061–8.

    Article  PubMed  CAS  Google Scholar 

  80. Leissring MA, Parker I, LaFerla FM. Presenilin-2 mutations modulate amplitude and kinetics of inositol 1, 4,5-trisphosphate-mediated calcium signals. J Biol Chem. 1999;274:32535–8.

    Article  PubMed  CAS  Google Scholar 

  81. Stutzmann GE, Caccamo A, LaFerla FM, Parker I. Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer's-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. J Neurosci. 2004;24:508–13.

    Article  PubMed  CAS  Google Scholar 

  82. Cheung KH et al. Mechanism of Ca2+ disruption in Alzheimer's disease by presenilin regulation of InsP3 receptor channel gating. Neuron. 2008;58:871–83.

    Article  PubMed  CAS  Google Scholar 

  83. Boehning D et al. Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol. 2003;5:1051–61.

    Article  PubMed  CAS  Google Scholar 

  84. Fujiwara A, Hirose K, Yamazawa T, Iino M. Reduced IP3 sensitivity of IP3 receptor in Purkinje neurons. Neuroreport. 2001;12:2647–51.

    Article  PubMed  CAS  Google Scholar 

  85. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.

    PubMed  CAS  Google Scholar 

  86. Ito M. The molecular organization of cerebellar long-term depression. Nat Rev Neurosci. 2002;3:896–902.

    Article  PubMed  CAS  Google Scholar 

  87. Sakurai M. Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. Proc Natl Acad Sci U S A. 1990;87:3383–5.

    Article  PubMed  CAS  Google Scholar 

  88. Konnerth A, Dreessen J, Augustine GJ. Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells. Proc Natl Acad Sci USA. 1992;89:7051–5.

    Article  PubMed  CAS  Google Scholar 

  89. Crepel F, Dhanjal SS, Sears TA. Effect of glutamate, aspartate and related derivatives on cerebellar purkinje cell dendrites in the rat: an in vitro study. J Physiol. 1982;329:297–317.

    PubMed  CAS  Google Scholar 

  90. Piochon C et al. NMDA receptor contribution to the climbing fiber response in the adult mouse Purkinje cell. J Neurosci. 2007;27:10797–809.

    Article  PubMed  CAS  Google Scholar 

  91. Renzi M, Farrant M, Cull-Candy SG. Climbing-fibre activation of NMDA receptors in Purkinje cells of adult mice. J Physiol. 2007;585:91–101.

    Article  PubMed  CAS  Google Scholar 

  92. Ito M, Kano M. Long-lasting depression of parallel fiber-Purkinje cell transmission induced by conjunctive stimulation of parallel fibers and climbing fibers in the cerebellar cortex. Neurosci Lett. 1982;33:253–8.

    Article  PubMed  CAS  Google Scholar 

  93. Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol. 1982;324:113–34.

    PubMed  CAS  Google Scholar 

  94. Ekerot CF, Kano M. Long-term depression of parallel fibre synapses following stimulation of climbing fibres. Brain Res. 1985;342:357–60.

    Article  PubMed  CAS  Google Scholar 

  95. Hashimoto K et al. Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience. 2009;162:601–11.

    Article  PubMed  CAS  Google Scholar 

  96. Crepel F, Krupa M. Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study. Brain Res. 1988;458:397–401.

    Article  PubMed  CAS  Google Scholar 

  97. Crepel F, Jaillard D. Pairing of pre- and postsynaptic activities in cerebellar Purkinje cells induces long-term changes in synaptic efficacy in vitro. J Physiol. 1991;432:123–41.

    PubMed  CAS  Google Scholar 

  98. Kano M, Kato M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature. 1987;325:276–9.

    Article  PubMed  CAS  Google Scholar 

  99. Linden DJ, Dickinson MH, Smeyne M, Connor JA. A long-term depression of AMPA currents in cultured cerebellar Purkinje neurons. Neuron. 1991;7:81–9.

    Article  PubMed  CAS  Google Scholar 

  100. Linden DJ, Dawson TM, Dawson VL. An evaluation of the nitric oxide/cGMP/cGMP-dependent protein kinase cascade in the induction of cerebellar long-term depression in culture. J Neurosci. 1995;15:5098–105.

    PubMed  CAS  Google Scholar 

  101. Kasono K, Hirano T. Involvement of inositol trisphosphate in cerebellar long-term depression. Neuroreport. 1995;6:569–72.

    Article  PubMed  CAS  Google Scholar 

  102. Khodakhah K, Armstrong CM. Induction of long-term depression and rebound potentiation by inositol trisphosphate in cerebellar Purkinje neurons. Proc Natl Acad Sci U S A. 1997;94:14009–14.

    Article  PubMed  CAS  Google Scholar 

  103. Inoue T, Kato K, Kohda K, Mikoshiba K. Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. J Neurosci. 1998;18:5366–73.

    PubMed  CAS  Google Scholar 

  104. Aiba A et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell. 1994;79:377–88.

    Article  PubMed  CAS  Google Scholar 

  105. Conquet F et al. Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature. 1994;372:237–43.

    Article  PubMed  CAS  Google Scholar 

  106. Hirono M et al. Phospholipase Cbeta4 and protein kinase Calpha and/or protein kinase CbetaI are involved in the induction of long term depression in cerebellar Purkinje cells. J Biol Chem. 2001;276:45236–42.

    Article  PubMed  CAS  Google Scholar 

  107. Miyata M et al. Deficient long-term synaptic depression in the rostral cerebellum correlated with impaired motor learning in phospholipase C beta4 mutant mice. Eur J Neurosci. 2001;13:1945–54.

    Article  PubMed  CAS  Google Scholar 

  108. Hartmann J et al. Distinct roles of Galpha(q) and Galpha11 for Purkinje cell signaling and motor behavior. J Neurosci. 2004;24:5119–30.

    Article  PubMed  CAS  Google Scholar 

  109. Hartell NA. Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron. 1996;16:601–10.

    Article  PubMed  CAS  Google Scholar 

  110. Chen C, Thompson RF. Temporal specificity of long-term depression in parallel fiber–Purkinje synapses in rat cerebellar slice. Learn Mem. 1995;2:185–98.

    Article  PubMed  CAS  Google Scholar 

  111. Wang SS, Khiroug L, Augustine GJ. Quantification of spread of cerebellar long-term depression with chemical two-photon uncaging of glutamate. Proc Natl Acad Sci U S A. 2000;97:8635–40.

    Article  PubMed  CAS  Google Scholar 

  112. Reynolds T, Hartell NA. An evaluation of the synapse specificity of long-term depression induced in rat cerebellar slices. J Physiol. 2000;527(Pt 3):563–77.

    Article  PubMed  CAS  Google Scholar 

  113. Miyata M et al. Local calcium release in dendritic spines required for long-term synaptic depression. Neuron. 2000;28:233–44.

    Article  PubMed  CAS  Google Scholar 

  114. Wang SS, Denk W, Hausser M. Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci. 2000;3:1266–73.

    Article  PubMed  CAS  Google Scholar 

  115. Sarkisov DV, Wang SS. Order-dependent coincidence detection in cerebellar Purkinje neurons at the inositol trisphosphate receptor. J Neurosci. 2008;28:133–42.

    Article  PubMed  CAS  Google Scholar 

  116. Sabatini BL, Oertner TG, Svoboda K. The life cycle of Ca(2+) ions in dendritic spines. Neuron. 2002;33:439–52.

    Article  PubMed  CAS  Google Scholar 

  117. Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J. Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J Physiol. 2003;551:13–32.

    Article  PubMed  CAS  Google Scholar 

  118. Schmidt H, Eilers J. Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins. J Comput Neurosci. 2009;27:229–43.

    Article  PubMed  Google Scholar 

  119. Allbritton NL, Meyer T, Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992;258:1812–5.

    Article  PubMed  CAS  Google Scholar 

  120. Santamaria F, Wils S, De Schutter E, Augustine GJ. Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron. 2006;52:635–48.

    Article  PubMed  CAS  Google Scholar 

  121. Finch EA, Augustine GJ. Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature. 1998;396:753–6.

    Article  PubMed  CAS  Google Scholar 

  122. Sarkisov DV, Gelber SE, Walker JW, Wang SS. Synapse specificity of calcium release probed by chemical two-photon uncaging of inositol 1,4,5-trisphosphate. J Biol Chem. 2007;282:25517–26.

    Article  PubMed  CAS  Google Scholar 

  123. Gally JA, Montague PR, Reeke Jr GN, Edelman GM. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci USA. 1990;87:3547–51.

    Article  PubMed  CAS  Google Scholar 

  124. Lancaster Jr JR. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci U S A. 1994;91:8137–41.

    Article  PubMed  CAS  Google Scholar 

  125. Reynolds T, Hartell NA. Roles for nitric oxide and arachidonic acid in the induction of heterosynaptic cerebellar LTD. Neuroreport. 2001;12:133–6.

    Article  PubMed  CAS  Google Scholar 

  126. Ogasawara H, Doi T, Doya K, Kawato M. Nitric oxide regulates input specificity of long-term depression and context dependence of cerebellar learning. PLoS Comput Biol. 2007;3:e179.

    Article  PubMed  CAS  Google Scholar 

  127. Harvey CD, Yasuda R, Zhong H, Svoboda K. The spread of Ras activity triggered by activation of a single dendritic spine. Science. 2008;321:136–40.

    Article  PubMed  CAS  Google Scholar 

  128. Ekerot CF, Kano M. Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neurosci Res. 1989;6:264–8.

    Article  PubMed  CAS  Google Scholar 

  129. Karachot L, Kado RT, Ito M. Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neurosci Res. 1994;21:161–8.

    Article  PubMed  CAS  Google Scholar 

  130. Berridge MJ. Cell signalling. A tale of two messengers. Nature. 1993;365:388–9.

    Article  PubMed  CAS  Google Scholar 

  131. Hartell NA. Induction of cerebellar long-term depression requires activation of glutamate metabotropic receptors. Neuroreport. 1994;5:913–6.

    Article  PubMed  CAS  Google Scholar 

  132. Marchant JS, Taylor CW. Cooperative activation of IP3 receptors by sequential binding of IP3 and Ca2+ safeguards against spontaneous activity. Curr Biol. 1997;7:510–8.

    Article  PubMed  CAS  Google Scholar 

  133. Iino M, Endo M. Calcium-dependent immediate feedback control of inositol 1,4,5-triphosphate-induced Ca2+ release. Nature. 1992;360:76–8.

    Article  PubMed  CAS  Google Scholar 

  134. Wang SS, Augustine GJ. Confocal imaging and local photolysis of caged compounds: dual probes of synaptic function. Neuron. 1995;15:755–60.

    Article  PubMed  CAS  Google Scholar 

  135. Mak DO et al. Rapid ligand-regulated gating kinetics of single inositol 1,4,5-trisphosphate receptor Ca2+ release channels. EMBO Rep. 2007;8:1044–51.

    Article  PubMed  CAS  Google Scholar 

  136. Doi T, Kuroda S, Michikawa T, Kawato M. Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci. 2005;25:950–61.

    Article  PubMed  CAS  Google Scholar 

  137. Salin PA, Malenka RC, Nicoll RA. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron. 1996;16:797–803.

    Article  PubMed  CAS  Google Scholar 

  138. Linden DJ, Ahn S. Activation of presynaptic cAMP-dependent protein kinase is required for induction of cerebellar long-term potentiation. J Neurosci. 1999;19:10221–7.

    PubMed  CAS  Google Scholar 

  139. Lev-Ram V, Wong ST, Storm DR, Tsien RY. A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci U S A. 2002;99:8389–93.

    Article  PubMed  CAS  Google Scholar 

  140. Coesmans M, Weber JT, De Zeeuw CI, Hansel C. Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron. 2004;44:691–700.

    Article  PubMed  CAS  Google Scholar 

  141. Jorntell H, Hansel C. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron. 2006;52:227–38.

    Article  PubMed  CAS  Google Scholar 

  142. Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.

    PubMed  CAS  Google Scholar 

  143. Markram H, Lubke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 1997;275:213–5.

    Article  PubMed  CAS  Google Scholar 

  144. Bi GQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci. 1998;18:10464–72.

    PubMed  CAS  Google Scholar 

  145. Bi G, Poo M. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu Rev Neurosci. 2001;24:139–66.

    Article  PubMed  CAS  Google Scholar 

  146. Urakubo H, Honda M, Froemke RC, Kuroda S. Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. J Neurosci. 2008;28:3310–23.

    Article  PubMed  CAS  Google Scholar 

  147. van Woerden GM et al. betaCaMKII controls the direction of plasticity at parallel fiber-Purkinje cell synapses. Nat Neurosci. 2009;12:823–5.

    Article  PubMed  CAS  Google Scholar 

  148. Tsien RY. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980;19:2396–404.

    Article  PubMed  CAS  Google Scholar 

  149. Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260:3440–50.

    PubMed  CAS  Google Scholar 

  150. Minta A, Kao JP, Tsien RY. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem. 1989;264:8171–8.

    PubMed  CAS  Google Scholar 

  151. Takechi H, Eilers J, Konnerth A. A new class of synaptic response involving calcium release in dendritic spines. Nature. 1998;396:757–60.

    Article  PubMed  CAS  Google Scholar 

  152. Yuste R, Katz LC. Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron. 1991;6:333–44.

    Article  PubMed  CAS  Google Scholar 

  153. Sullivan MR, Nimmerjahn A, Sarkisov DV, Helmchen F, Wang SS. In vivo calcium imaging of circuit activity in cerebellar cortex. J Neurophysiol. 2005;94:1636–44.

    Article  PubMed  CAS  Google Scholar 

  154. Miyawaki A et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997;388:882–7.

    Article  PubMed  CAS  Google Scholar 

  155. Romoser VA, Hinkle PM, Persechini A. Detection in living cells of Ca2+−dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. A new class of fluorescent indicators. J Biol Chem. 1997;272:13270–4.

    Article  PubMed  CAS  Google Scholar 

  156. Baird GS, Zacharias DA, Tsien RY. Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A. 1999;96:11241–6.

    Article  PubMed  CAS  Google Scholar 

  157. Palmer AE et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol. 2006;13:521–30.

    Article  PubMed  CAS  Google Scholar 

  158. Heim N, Griesbeck O. Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J Biol Chem. 2004;279:14280–6.

    Article  PubMed  CAS  Google Scholar 

  159. Mank M et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat Meth. 2008;5:805–11.

    Article  CAS  Google Scholar 

  160. Nagai T, Sawano A, Park ES, Miyawaki A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci USA. 2001;98:3197–202.

    Article  PubMed  CAS  Google Scholar 

  161. Nakai J, Ohkura M, Imoto K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol. 2001;19:137–41.

    Article  PubMed  CAS  Google Scholar 

  162. Tian L et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Meth. 2009;6:875–81.

    Article  CAS  Google Scholar 

  163. Tanimura A, Nezu A, Morita T, Turner RJ, Tojyo Y. Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells. J Biol Chem. 2004;279:38095–8.

    Article  PubMed  CAS  Google Scholar 

  164. Sato M, Ueda Y, Shibuya M, Umezawa Y. Locating inositol 1,4,5-trisphosphate in the nucleus and neuronal dendrites with genetically encoded fluorescent indicators. Anal Chem. 2005;77:4751–8.

    Article  PubMed  CAS  Google Scholar 

  165. Matsu-ura T et al. Cytosolic inositol 1,4,5-trisphosphate dynamics during intracellular calcium oscillations in living cells. J Cell Biol. 2006;173:755–65.

    Article  PubMed  CAS  Google Scholar 

  166. Remus TP et al. Biosensors to measure inositol 1,4,5-trisphosphate concentration in living cells with spatiotemporal resolution. J Biol Chem. 2006;281:608–16.

    Article  PubMed  CAS  Google Scholar 

  167. Hirose K, Kadowaki S, Tanabe M, Takeshima H, Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999;284:1527–30.

    Article  PubMed  CAS  Google Scholar 

  168. Okubo Y, Kakizawa S, Hirose K, Iino M. Visualization of IP(3) dynamics reveals a novel AMPA receptor-triggered IP(3) production pathway mediated by voltage-dependent Ca(2+) influx in Purkinje cells. Neuron. 2001;32:113–22.

    Article  PubMed  CAS  Google Scholar 

  169. Okubo Y, Kakizawa S, Hirose K, Iino M. Cross talk between metabotropic and ionotropic glutamate receptor-mediated signaling in parallel fiber-induced inositol 1,4,5-trisphosphate production in cerebellar Purkinje cells. J Neurosci. 2004;24:9513–20.

    Article  PubMed  CAS  Google Scholar 

  170. Cifuentes ME, Delaney T, Rebecchi MJ. D-myo-inositol 1,4,5-trisphosphate inhibits binding of phospholipase C-delta 1 to bilayer membranes. J Biol Chem. 1994;269:1945–8.

    PubMed  CAS  Google Scholar 

  171. Lemmon MA, Ferguson KM, O'Brien R, Sigler PB, Schlessinger J. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci U S A. 1995;92:10472–6.

    Article  PubMed  CAS  Google Scholar 

  172. Nash MS, Young KW, Willars GB, Challiss RA, Nahorski SR. Single-cell imaging of graded Ins(1,4,5)P3 production following G-protein-coupled-receptor activation. Biochem J. 2001;356:137–42.

    Article  PubMed  CAS  Google Scholar 

  173. Nash MS et al. Determinants of metabotropic glutamate receptor-5-mediated Ca2+ and inositol 1,4,5-trisphosphate oscillation frequency. Receptor density versus agonist concentration. J Biol Chem. 2002;277:35947–60.

    Article  PubMed  CAS  Google Scholar 

  174. van der Wal J, Habets R, Varnai P, Balla T, Jalink K. Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J Biol Chem. 2001;276:15337–44.

    Article  PubMed  Google Scholar 

  175. Nahorski SR, Young KW, John Challiss RA, Nash MS. Visualizing phosphoinositide signalling in single neurons gets a green light. Trends Neurosci. 2003;26:444–52.

    Article  PubMed  CAS  Google Scholar 

  176. Takei K, Shin RM, Inoue T, Kato K, Mikoshiba K. Regulation of nerve growth mediated by inositol 1,4,5-trisphosphate receptors in growth cones. Science. 1998;282:1705–8.

    Article  PubMed  CAS  Google Scholar 

  177. Iketani M et al. Regulation of neurite outgrowth mediated by neuronal calcium sensor-1 and inositol 1,4,5-trisphosphate receptor in nerve growth cones. Neuroscience. 2009;161:743–52.

    Article  PubMed  CAS  Google Scholar 

  178. Akiyama, H., Matsu-ura, T., Mikoshiba, K. & Kamiguchi, H. Control of neuronal growth cone navigation by asymmetric inositol 1,4,5-trisphosphate signals. Sci Signal 2, ra34 (2009)

  179. Lohmann C, Myhr KL, Wong RO. Transmitter-evoked local calcium release stabilizes developing dendrites. Nature. 2002;418:177–81.

    Article  PubMed  CAS  Google Scholar 

  180. Lohmann C, Finski A, Bonhoeffer T. Local calcium transients regulate the spontaneous motility of dendritic filopodia. Nat Neurosci. 2005;8:305–12.

    Article  PubMed  CAS  Google Scholar 

  181. Hisatsune C et al. Inositol 1,4,5-trisphosphate receptor type 1 in granule cells, not in Purkinje cells, regulates the dendritic morphology of Purkinje cells through brain-derived neurotrophic factor production. J Neurosci. 2006;26:10916–24.

    Article  PubMed  CAS  Google Scholar 

  182. Furutani K, Okubo Y, Kakizawa S, Iino M. Postsynaptic inositol 1,4,5-trisphosphate signaling maintains presynaptic function of parallel fiber-Purkinje cell synapses via BDNF. Proc Natl Acad Sci U S A. 2006;103:8528–33.

    Article  PubMed  CAS  Google Scholar 

  183. Matsumoto M et al. Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor. Nature. 1996;379:168–71.

    Article  PubMed  CAS  Google Scholar 

  184. Ogura H, Matsumoto M, Mikoshiba K. Motor discoordination in mutant mice heterozygous for the type 1 inositol 1,4,5-trisphosphate receptor. Behav Brain Res. 2001;122:215–9.

    Article  PubMed  CAS  Google Scholar 

  185. Knight MA et al. Spinocerebellar ataxia type 15 (sca15) maps to 3p24.2-3pter: exclusion of the ITPR1 gene, the human orthologue of an ataxic mouse mutant. Neurobiol Dis. 2003;13:147–57.

    Article  PubMed  CAS  Google Scholar 

  186. van de Leemput J et al. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet. 2007;3:e108.

    Article  PubMed  CAS  Google Scholar 

  187. Hara K et al. Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families. Neurology. 2008;71:547–51.

    Article  PubMed  CAS  Google Scholar 

  188. Iwaki A et al. Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet. 2008;45:32–5.

    Article  PubMed  CAS  Google Scholar 

  189. Barski JJ, Dethleffsen K, Meyer M. Cre recombinase expression in cerebellar Purkinje cells. Genesis. 2000;28:93–8.

    Article  PubMed  CAS  Google Scholar 

  190. Zhang XM et al. Highly restricted expression of Cre recombinase in cerebellar Purkinje cells. Genesis. 2004;40:45–51.

    Article  PubMed  CAS  Google Scholar 

  191. Uchiyama T, Yoshikawa F, Hishida A, Furuichi T, Mikoshiba K. A novel recombinant hyperaffinity inositol 1,4,5-trisphosphate (IP(3)) absorbent traps IP(3), resulting in specific inhibition of IP(3)-mediated calcium signaling. J Biol Chem. 2002;277:8106–13.

    Article  PubMed  CAS  Google Scholar 

  192. Walker DS, Gower NJ, Ly S, Bradley GL, Baylis HA. Regulated disruption of inositol 1,4,5-trisphosphate signaling in Caenorhabditis elegans reveals new functions in feeding and embryogenesis. Mol Biol Cell. 2002;13:1329–37.

    Article  PubMed  CAS  Google Scholar 

  193. Usui-Aoki K et al. Targeted expression of Ip3 sponge and Ip3 dsRNA impaires sugar taste sensation in Drosophila. J Neurogenet. 2005;19:123–41.

    Article  PubMed  CAS  Google Scholar 

  194. Tang TS et al. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc Natl Acad Sci U S A. 2005;102:2602–7.

    Article  PubMed  CAS  Google Scholar 

  195. Tang TS, Guo C, Wang H, Chen X, Bezprozvanny I. Neuroprotective effects of inositol 1,4,5-trisphosphate receptor C-terminal fragment in a Huntington's disease mouse model. J Neurosci. 2009;29:1257–66.

    Article  PubMed  CAS  Google Scholar 

  196. Liu J et al. Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci. 2009;29:9148–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Enomoto M, Nakamura H, Hamada K, Yamazaki H, and Matsu-ura T for helpful comments and discussions. This work was supported by Ministry of Education, Culture, Sports, Science and Technology, and ICORP-SORST, JST.

Conflict of interest

The authors declare no conflict of interest to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhiko Mikoshiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goto, JI., Mikoshiba, K. Inositol 1,4,5-Trisphosphate Receptor-Mediated Calcium Release in Purkinje Cells: From Molecular Mechanism to Behavior. Cerebellum 10, 820–833 (2011). https://doi.org/10.1007/s12311-011-0270-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-011-0270-5

Keywords

Navigation