Skip to main content
Log in

What Features of Limb Movements are Encoded in the Discharge of Cerebellar Neurons?

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This review examines the signals encoded in the discharge of cerebellar neurons during voluntary arm and hand movements, assessing the state of our knowledge and the implications for hypotheses of cerebellar function. The evidence for the representation of forces, joint torques, or muscle activity in the discharge of cerebellar neurons is limited, questioning the validity of theories that the cerebellum directly encodes the motor command. In contrast, kinematic parameters such as position, direction, and velocity are widely and robustly encoded in the activity of cerebellar neurons. These findings favor hypotheses that the cerebellum plans or controls movements in a kinematic framework, such as the proposal that the cerebellum provides a forward internal model. Error signals are needed for on-line correction and motor learning, and several hypotheses postulate the need for their representations in the cerebellum. Error signals have been described mostly in the complex spike discharge of Purkinje cells, but no consensus has emerged on the exact information signaled by complex spikes during limb movements. Newer studies suggest that simple spike firing may also encode error signals. Finally, Purkinje cells located more posterior and laterally in the cerebellar cortex and dentate neurons encode nonmotor, task-related signals such as visual cues. These results suggest that cerebellar neurons provide a complement of information about motor behaviors. We assert that additional single unit studies are needed using rich movement paradigms, given the power of this approach to directly test specific hypotheses about cerebellar function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gilbert PF, Thach WT. Purkinje cell activity during motor learning. Brain Res. 1977;128:309–28.

    Article  PubMed  CAS  Google Scholar 

  2. Marr D. A theory of cerebellar cortex. J Physiol. 1969;202:437–70.

    PubMed  CAS  Google Scholar 

  3. Ito M. Historical review of the significance of the cerebellum and the role of Purkinje cells in motor learning. Ann NY Acad Sci. 2002;978:273–88.

    Article  PubMed  Google Scholar 

  4. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci. 1998;2:338–47.

    Article  PubMed  CAS  Google Scholar 

  5. Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 1999;9:718–27.

    Article  PubMed  CAS  Google Scholar 

  6. Lisberger SG. Internal models of eye movement in the floccular complex of the monkey cerebellum. Neuroscience. 2009;162:763–76.

    Article  PubMed  CAS  Google Scholar 

  7. Braitenberg V, Atwood RP. Morphological observations on the cerebellar cortex. J Comp Neurol. 1958;109:1–33.

    Article  PubMed  CAS  Google Scholar 

  8. Welsh JP, Lang EJ, Suglhara I, Llinas R. Dynamic organization of motor control within the olivocerebellar system. Nature. 1995;374:453–7.

    Article  PubMed  CAS  Google Scholar 

  9. Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann NY Acad Sci. 1990;608:179–207.

    Article  PubMed  CAS  Google Scholar 

  10. O’Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28:2252–60.

    Article  PubMed  CAS  Google Scholar 

  11. Oscarsson O. Functional organization of olivary projection to the cerebellar anterior lobe. In: Courville J, editor. The inferior olivary nucleus: anatomy and physiology. New York: Raven; 1980. p. 279–90.

    Google Scholar 

  12. Morton SM, Bastian AJ. Mechanisms of cerebellar gait ataxia. Cerebellum. 2007;6:79–86.

    Article  PubMed  Google Scholar 

  13. Bloedel JR, Bracha V. On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behav Brain Res. 1995;68:1–44.

    Article  PubMed  CAS  Google Scholar 

  14. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  PubMed  CAS  Google Scholar 

  15. Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.

    Article  PubMed  CAS  Google Scholar 

  16. Glickstein M, Doron K. Cerebellum: connections and functions. Cerebellum. 2008;7:589–94.

    Article  PubMed  Google Scholar 

  17. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    Article  PubMed  Google Scholar 

  18. Holmes G. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain. 1917;40:461–535.

    Article  Google Scholar 

  19. Thach WT. Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. J Neurophysiol. 1968;31:785–97.

    PubMed  CAS  Google Scholar 

  20. Smith AM. The coactivation of antagonist muscles. Can J Physiol Pharmacol. 1981;59:733–47.

    Article  PubMed  CAS  Google Scholar 

  21. Frysinger RC, Bourbonnais D, Kalaska JF, Smith AM. Cerebellar cortical activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol. 1984;51:32–49.

    PubMed  CAS  Google Scholar 

  22. Miller LE, Houk JC. Motor co-ordinates in primate red nucleus: preferential relation to muscle activation versus kinematic variables. J Physiol. 1995;488(Pt 2):533–48.

    PubMed  CAS  Google Scholar 

  23. Bastian AJ, Zackowski KM, Thach WT. Cerebellar ataxia: torque deficiency or torque mismatch between joints? J Neurophysiol. 2000;83:3019–30.

    PubMed  CAS  Google Scholar 

  24. Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76:492–509.

    PubMed  CAS  Google Scholar 

  25. Maschke M, Gomez CM, Ebner TJ, Konczak J. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol. 2004;91:230–8.

    Article  PubMed  Google Scholar 

  26. Smith MA, Shadmehr R. Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol. 2005;93:2809–21.

    Article  PubMed  Google Scholar 

  27. Muller F, Dichgans J. Dyscoordination of pinch and lift forces during grasp in patients with cerebellar lesions. Exp Brain Res. 1994;101:485–92.

    Article  PubMed  CAS  Google Scholar 

  28. Nowak DA, Hermsdorfer J, Marquardt C, Fuchs HH. Grip and load force coupling during discrete vertical arm movements with a grasped object in cerebellar atrophy. Exp Brain Res. 2002;145:28–39.

    Article  PubMed  Google Scholar 

  29. Rost K, Nowak DA, Timmann D, Hermsdorfer J. Preserved and impaired aspects of predictive grip force control in cerebellar patients. Clin Neurophysiol. 2005;116:1405–14.

    Article  PubMed  Google Scholar 

  30. Schweighofer N, Arbib MA, Kawato M. Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci. 1998;10:86–94.

    Article  PubMed  CAS  Google Scholar 

  31. Coltz JD, Johnson MT, Ebner TJ. Cerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking. J Neurosci. 1999;19:1782–803.

    PubMed  CAS  Google Scholar 

  32. Roitman AV, Pasalar S, Johnson MT, Ebner TJ. Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. J Neurosci. 2005;25:9244–57.

    Article  PubMed  CAS  Google Scholar 

  33. Smith AM, Bourbonnais D. Neuronal activity in cerebellar cortex related to control of prehensile force. J Neurophysiol. 1981;45:286–303.

    PubMed  CAS  Google Scholar 

  34. Espinoza E, Smith AM. Purkinje cell simple spike activity during grasping and lifting objects of different textures and weights. J Neurophysiol. 1990;64:698–714.

    PubMed  CAS  Google Scholar 

  35. Mason CR, Hendrix CM, Ebner TJ. Purkinje cells signal hand shape and grasp force during reach-to-grasp in the monkey. J Neurophysiol. 2006;95:144–58.

    Article  PubMed  Google Scholar 

  36. Yamamoto K, Kawato M, Kotosaka S, Kitazawa S. Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields. J Neurophysiol. 2007;97:1588–99.

    Article  PubMed  Google Scholar 

  37. Holdefer RN, Miller LE. Dynamic correspondence between Purkinje cell discharge and forelimb muscle activity during reaching. Brain Res. 2009;1295:67–75.

    Article  PubMed  CAS  Google Scholar 

  38. Pasalar S, Roitman AV, Durfee WK, Ebner TJ. Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci. 2006;9:1404–11.

    Article  PubMed  CAS  Google Scholar 

  39. Soteropoulos DS, Baker SN. Bilateral representation in the deep cerebellar nuclei. J Physiol. 2008;586:1117–36.

    Article  PubMed  CAS  Google Scholar 

  40. Cooper SE, Martin JH, Ghez C. Effects of inactivation of the anterior interpositus nucleus on the kinematic and dynamic control of multijoint movement. J Neurophysiol. 2000;84:1988–2000.

    PubMed  CAS  Google Scholar 

  41. MacKay WA. Cerebellar nuclear activity in relation to simple movements. Exp Brain Res. 1988;71:47–58.

    Article  PubMed  CAS  Google Scholar 

  42. Bava A, Grimm RJ, Rushmer DS. Fastigial unit activity during voluntary movement in primates. Brain Res. 1983;288:371–4.

    Article  PubMed  CAS  Google Scholar 

  43. Thach WT. Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J Neurophysiol. 1978;41:654–76.

    PubMed  CAS  Google Scholar 

  44. Goodkin HP, Thach WT. Cerebellar control of constrained and unconstrained movements. II. EMG and nuclear activity. J Neurophysiol. 2003;89:896–908.

    Article  PubMed  CAS  Google Scholar 

  45. Wetts R, Kalaska JF, Smith AM. Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol. 1985;54:231–44.

    PubMed  CAS  Google Scholar 

  46. Schieber MH, Thach WT. Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. J Neurophysiol. 1985;54:1228–70.

    PubMed  CAS  Google Scholar 

  47. Ivanusic JJ, Bourke DW, Xu ZM, Butler EG, Horne MK. Cerebellar thalamic activity in the macaque monkey encodes the duration but not the force or velocity of wrist movement. Brain Res. 2005;1041:181–97.

    Article  PubMed  CAS  Google Scholar 

  48. Dugas C, Smith AM. Responses of cerebellar Purkinje cells to slip of a hand-held object. J Neurophysiol. 1992;67:483–95.

    PubMed  CAS  Google Scholar 

  49. Fu QG, Flament D, Coltz JD, Ebner TJ. Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey. J Neurophysiol. 1997;78:478–91.

    PubMed  CAS  Google Scholar 

  50. Richter S, Maschke M, Timmann D, Konczak J, Kalenscher T, Illenberger AR, et al. Adaptive motor behavior of cerebellar patients during exposure to unfamiliar external forces. J Mot Behav. 2004;36:28–38.

    Article  PubMed  Google Scholar 

  51. Atkeson CG, Hollerbach JM. Kinematic features of unrestrained vertical arm movements. J Neurosci. 1985;5:2318–30.

    PubMed  CAS  Google Scholar 

  52. Lacquaniti F, Soechting JF, Terzuolo SA. Path constraints on point-to-point arm movements in three-dimensional space. Neuroscience. 1986;17:313–24.

    Article  PubMed  CAS  Google Scholar 

  53. Abend W, Bizzi E, Morasso P. Human arm trajectory formation. Brain. 1982;105:331–48.

    Article  PubMed  CAS  Google Scholar 

  54. Georgopoulos AP, Kalaska JF, Massey JT. Spatial trajectories and reaction times of aimed movements: effects of practice, uncertainty, and change in target location. J Neurophysiol. 1981;46:725–43.

    PubMed  CAS  Google Scholar 

  55. Soechting JF, Flanders M. Extrapolation of visual motion for manual interception. J Neurophysiol. 2008;99:2956–67.

    Article  PubMed  Google Scholar 

  56. Soechting JF, Flanders M. Errors in pointing are due to approximations in sensorimotor transformations. J Neurophysiol. 1989;62:595–608.

    PubMed  CAS  Google Scholar 

  57. Vindras P, Viviani P. Frames of reference and control parameters in visuomanual pointing. J Exp Psychol Hum Percept Perform. 1998;24:569–91.

    Article  PubMed  CAS  Google Scholar 

  58. Stein JF, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.

    PubMed  CAS  Google Scholar 

  59. Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science. 1995;269:1880–2.

    Article  PubMed  CAS  Google Scholar 

  60. Holmes G. The cerebellum of man. Brain. 1939;62:1–30.

    Article  Google Scholar 

  61. Hore J, Wild B, Diener HC. Cerebellar dysmetria at the elbow, wrist, and fingers. J Neurophysiol. 1991;65:563–71.

    PubMed  CAS  Google Scholar 

  62. Beppu H, Suda M, Tanaka R. Analysis of cerebellar motor disorders by visually guided elbow tracking movement. Brain. 1984;107(Pt 3):787–809.

    Article  PubMed  Google Scholar 

  63. Miall RC, Weir DJ, Stein JF. Visuo-motor tracking during reversible inactivation of the cerebellum. Exp Brain Res. 1987;65:455–64.

    Article  PubMed  CAS  Google Scholar 

  64. Diener HC, Dichgans J. Pathophysiology of cerebellar ataxia. Mov Disord. 1992;7:95–109.

    Article  PubMed  CAS  Google Scholar 

  65. Milak MS, Shimansky Y, Bracha V, Bloedel JR. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement. J Neurophysiol. 1997;78:939–59.

    PubMed  CAS  Google Scholar 

  66. Turner RS, Grafton ST, Votaw JR, DeLong MR, Hoffman JM. Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol. 1998;80:2162–76.

    PubMed  CAS  Google Scholar 

  67. Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res. 2003;142:171–88.

    Article  PubMed  Google Scholar 

  68. Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol. 2006;16:645–9.

    Article  PubMed  CAS  Google Scholar 

  69. Nowak DA, Topka H, Timmann D, Boecker H, Hermsdorfer J. The role of the cerebellum for predictive control of grasping. Cerebellum. 2007;6:7–17.

    Article  PubMed  Google Scholar 

  70. Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol. 2007;98:54–62.

    Article  PubMed  Google Scholar 

  71. Bosco G, Rankin A, Poppele R. Representation of passive hindlimb postures in cat spinocerebellar activity. J Neurophysiol. 1996;76:715–26.

    PubMed  CAS  Google Scholar 

  72. Bosco G, Poppele RE. Representation of multiple kinematic parameters of the cat hindlimb in spinocerebellar activity. J Neurophysiol. 1997;78:1421–32.

    PubMed  CAS  Google Scholar 

  73. Garifoli A, Caserta C, Bosco G, Lombardo SA, Casabona A, Perciavalle V. Kinematic features of passive forelimb movements and rat cuneate neuron discharges. NeuroReport. 2002;13:267–71.

    Article  PubMed  Google Scholar 

  74. Giaquinta G, Casabona A, Valle MS, Bosco G, Perciavalle V. On the relation of rat’s external cuneate activity to global parameters of forelimb posture. NeuroReport. 1999;10:3075–80.

    Article  PubMed  CAS  Google Scholar 

  75. van Kan PL, Gibson AR, Houk JC. Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:74–94.

    PubMed  Google Scholar 

  76. Kolb FP, Rubia FJ, Bauswein E. Cerebellar unit responses of the mossy fibre system to passive movements in the decerebrate cat. I. Responses to static parameters. Exp Brain Res. 1987;68:234–48.

    PubMed  CAS  Google Scholar 

  77. Bengtsson F, Jorntell H. Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs. Proc Natl Acad Sci USA. 2009;106:2389–94.

    Article  PubMed  CAS  Google Scholar 

  78. Ebner TJ, Fu Q. What features of visually guided arm movements are encoded in the simple spike discharge of cerebellar Purkinje cells? Prog Brain Res. 1997;114:431–47.

    Article  PubMed  CAS  Google Scholar 

  79. Fortier PA, Kalaska JF, Smith AM. Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. J Neurophysiol. 1989;62:198–211.

    PubMed  CAS  Google Scholar 

  80. Marple-Horvat DE, Stein JF. Cerebellar neuronal activity related to arm movements in trained rhesus monkeys. J Physiol. 1987;394:351–66.

    PubMed  CAS  Google Scholar 

  81. Mano N, Yamamoto K. Simple-spike activity of cerebellar Purkinje cells related to visually guided wrist tracking movement in the monkey. J Neurophysiol. 1980;43:713–28.

    PubMed  CAS  Google Scholar 

  82. Stone LS, Lisberger SG. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes. J Neurophysiol. 1990;63:1241–61.

    PubMed  CAS  Google Scholar 

  83. Shidara M, Kawano K, Gomi H, Kawato M. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature. 1993;365:50–2.

    Article  PubMed  CAS  Google Scholar 

  84. Medina JF, Lisberger SG. Encoding and decoding of learned smooth pursuit eye movements in the floccular complex of the monkey cerebellum. J Neurophysiol. 2009;102:2039–54.

    Article  PubMed  Google Scholar 

  85. Gomi H, Shidara M, Takemura A, Inoue Y, Kawano K, Kawato M. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys I. Simple spikes. J Neurophysiol. 1998;80:818–31.

    PubMed  CAS  Google Scholar 

  86. Thier P, Dicke PW, Haas R, Barash S. Encoding of movement time by populations of cerebellar Purkinje cells. Nature. 2000;405:72–6.

    Article  PubMed  CAS  Google Scholar 

  87. Valle MS, Bosco G, Poppele R. Information processing in the spinocerebellar system. NeuroReport. 2000;11:4075–9.

    Article  PubMed  CAS  Google Scholar 

  88. Giaquinta G, Valle MS, Caserta C, Casabona A, Bosco G, Perciavalle V. Sensory representation of passive movement kinematics by rat’s spinocerebellar Purkinje cells. Neurosci Lett. 2000;285:41–4.

    Article  PubMed  CAS  Google Scholar 

  89. Leung HC, Suh M, Kettner RE. Cerebellar flocculus and paraflocculus Purkinje cell activity during circular pursuit in monkey. J Neurophysiol. 2000;83:13–30.

    PubMed  CAS  Google Scholar 

  90. Suh M, Leung HC, Kettner RE. Cerebellar flocculus and ventral paraflocculus Purkinje cell activity during predictive and visually driven pursuit in monkey. J Neurophysiol. 2000;84:1835–50.

    PubMed  CAS  Google Scholar 

  91. Fu QG, Mason CR, Flament D, Coltz JD, Ebner TJ. Movement kinematics encoded in complex spike discharge of primate cerebellar Purkinje cells. NeuroReport. 1997;8:523–9.

    Article  PubMed  CAS  Google Scholar 

  92. Ebner TJ, Johnson MT, Roitman A, Fu Q. What do complex spikes signal about limb movements? Ann NY Acad Sci. 2002;978:205–18.

    Article  PubMed  Google Scholar 

  93. Kitazawa S, Kimura T, Yin PB. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature. 1998;392:494–7.

    Article  PubMed  CAS  Google Scholar 

  94. Horn KM, van Kan PL, Gibson AR. Reduction of rostral dorsal accessory olive responses during reaching. J Neurophysiol. 1996;76:4140–51.

    PubMed  CAS  Google Scholar 

  95. Gellman R, Gibson AR, Houk JC. Inferior olivary neurons in the awake cat: detection of contact and passive body displacement. J Neurophysiol. 1985;54:40–60.

    PubMed  CAS  Google Scholar 

  96. Rushmer DS, Roberts WJ, Augter GK. Climbing fiber responses of cerebellar Purkinje cells to passive movement of the cat forepaw. Brain Res. 1976;106:1–20.

    Article  PubMed  CAS  Google Scholar 

  97. Weiss C, Houk JC, Gibson AR. Inhibition of sensory responses of cat inferior olive neurons produced by stimulation of red nucleus. J Neurophysiol. 1990;64:1170–85.

    PubMed  CAS  Google Scholar 

  98. Chapman CE, Spidalieri G, Lamarre Y. Activity of dentate neurons during arm movements triggered by visual, auditory, and somesthetic stimuli in the monkey. J Neurophysiol. 1986;55:203–26.

    PubMed  CAS  Google Scholar 

  99. Soechting JF, Burton JE, Onoda N. Relationships between sensory input, motor output and unit activity in interpositus and red nuclei during intentional movement. Brain Res. 1978;152:65–79.

    Article  PubMed  CAS  Google Scholar 

  100. van Kan PL, Houk JC, Gibson AR. Output organization of intermediate cerebellum of the monkey. J Neurophysiol. 1993;69:57–73.

    PubMed  Google Scholar 

  101. Aumann TD, Rawson JA, Horne MK. The relationship between monkey dentate cerebellar nucleus activity and kinematic parameters of wrist movement. Exp Brain Res. 1998;119:179–90.

    Article  PubMed  CAS  Google Scholar 

  102. Thach WT. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J Neurophysiol. 1970;33:537–47.

    PubMed  CAS  Google Scholar 

  103. Gray C, Perciavalle V, Poppele R. Sensory responses to passive hindlimb joint rotation in the cerebellar cortex of the cat. Brain Res. 1993;622:280–4.

    Article  PubMed  CAS  Google Scholar 

  104. Lu X, Hikosaka O, Miyachi S. Role of monkey cerebellar nuclei in skill for sequential movement. J Neurophysiol. 1998;79:2245–54.

    PubMed  CAS  Google Scholar 

  105. Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. Neural correlates of reach errors. J Neurosci. 2005;25:9919–31.

    Article  PubMed  CAS  Google Scholar 

  106. Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886:237–45.

    Article  PubMed  CAS  Google Scholar 

  107. Graf W, Simpson JI, Leonard CS. Spatial organization of visual messages of the rabbit’s cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells. J Neurophysiol. 1988;60:2091–121.

    PubMed  CAS  Google Scholar 

  108. Kobayashi Y, Kawano K, Takemura A, Inoue Y, Kitama T, Gomi H, et al. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes. J Neurophysiol. 1998;80:832–48.

    PubMed  CAS  Google Scholar 

  109. Barmack NH, Shojaku H. Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol. 1995;74:2573–89.

    PubMed  CAS  Google Scholar 

  110. Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11:1185–92.

    Article  PubMed  CAS  Google Scholar 

  111. Kim JH, Wang JJ, Ebner TJ. Climbing fiber afferent modulation during treadmill locomotion in the cat. J Neurophysiol. 1987;57:787–802.

    PubMed  CAS  Google Scholar 

  112. Ojakangas CL, Ebner TJ. Purkinje cell complex spike activity during voluntary motor learning: relationship to kinematics. J Neurophysiol. 1994;72:2617–30.

    PubMed  CAS  Google Scholar 

  113. Ebner TJ, Bloedel JR. Climbing fiber afferent system: intrinsic properties and role in cerebellar information processing. In: King JS, editor. New concepts in cerebellar neurobiology. New York: Alan R. Liss, Inc.; 1987. p. 371–86.

    Google Scholar 

  114. Bloedel JR. Functional heterogeneity with structural homogeneity: how does the cerebellum operate? Behav Brain Sci. 1992;15:666–78.

    Article  Google Scholar 

  115. Ito M. Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev. 2001;81:1143–95.

    PubMed  CAS  Google Scholar 

  116. Kawato M. Learning internal models of the motor apparatus. In: Bloedel JR, Ebner TJ, Wise SP, editors. The acquisition of motor behavior in vertebrates. Cambridge: MIT Press; 1996. p. 409–30.

    Google Scholar 

  117. Thach WT. A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem. 1998;70:177–88.

    Article  PubMed  CAS  Google Scholar 

  118. Catz N, Dicke PW, Thier P. Cerebellar complex spike firing is suitable to induce as well as to stabilize motor learning. Curr Biol. 2005;15:2179–89.

    Article  PubMed  CAS  Google Scholar 

  119. Dash S, Catz N, Dicke PW, Thier P. Specific vermal complex spike responses build up during the course of smooth-pursuit adaptation, paralleling the decrease of performance error. Exp Brain Res. 2010;205:41–55.

    Article  PubMed  Google Scholar 

  120. Greger B, Norris S. Simple spike firing in the posterior lateral cerebellar cortex of Macaque Mulatta was correlated with success-failure during a visually guided reaching task. Exp Brain Res. 2005;167:660–5.

    Article  PubMed  Google Scholar 

  121. Roitman AV, Pasalar S, Ebner TJ. Single trial coupling of Purkinje cell activity to speed and error signals during circular manual tracking. Exp Brain Res. 2009;192:241–51.

    Article  PubMed  CAS  Google Scholar 

  122. Norris SA, Greger B, Hathaway EN, Thach WT. Purkinje cell spike firing in the posterolateral cerebellum: correlation with visual stimulus, oculomotor response, and error feedback. J Neurophysiol. 2004;92:1867–79.

    Article  PubMed  Google Scholar 

  123. Marple-Horvat DE, Stein JF. Neuronal activity in the lateral cerebellum of trained monkeys, related to visual stimuli or to eye movements. J Physiol. 1990;428:595–614.

    PubMed  CAS  Google Scholar 

  124. Liu X, Robertson E, Miall RC. Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex. J Neurophysiol. 2003;89:1223–37.

    Article  PubMed  Google Scholar 

  125. Marple-Horvat DE, Criado JM, Armstrong DM. Neuronal activity in the lateral cerebellum of the cat related to visual stimuli at rest, visually guided step modification, and saccadic eye movements. J Physiol. 1998;506:489–514.

    Article  PubMed  CAS  Google Scholar 

  126. Miles OB, Cerminara NL, Marple-Horvat DE. Purkinje cells in the lateral cerebellum of the cat encode visual events and target motion during visually guided reaching. J Physiol. 2006;571:619–37.

    Article  PubMed  CAS  Google Scholar 

  127. Cerminara NL, Apps R, Marple-Horvat DE. An internal model of a moving visual target in the lateral cerebellum. J Physiol. 2009;587:429–42.

    Article  PubMed  CAS  Google Scholar 

  128. Mushiake H, Strick PL. Preferential activity of dentate neurons during limb movements guided by vision. J Neurophysiol. 1993;70:2660–4.

    PubMed  CAS  Google Scholar 

  129. Ebner TJ, Pasalar S. Cerebellum predicts the future motor state. Cerebellum. 2008;7:583–8.

    Article  PubMed  Google Scholar 

  130. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.

    Article  PubMed  CAS  Google Scholar 

  131. Kawato M, Wolpert D. Internal models for motor control. Novartis Found Symp. 1998;218:291–304.

    PubMed  CAS  Google Scholar 

  132. Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci. 2003;100:5461–6.

    Article  PubMed  CAS  Google Scholar 

  133. Apps R, Hawkes R. Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci. 2009;10:670–81.

    Article  PubMed  CAS  Google Scholar 

  134. Hawkes R, Herrup K. Aldolase C/zebrin II and the regionalization of the cerebellum. J Mol Neurosci. 1995;6:147–58.

    Article  PubMed  CAS  Google Scholar 

  135. Voogd J. Comparative aspects of the structure and fibre connexions of the mammalian cerebellum. Prog Brain Res. 1967;25:94–134.

    Article  PubMed  CAS  Google Scholar 

  136. Voogd J, Bigare F. Topographical distribution of olivary and corticonuclear fibers in the cerebellum. A review. In: Courville J, DeMontigny C, Lamarre Y, editors. The inferior olivary nucleus. New York: Raven; 1980. p. 207–34.

    Google Scholar 

  137. Brodal A, Kawamura K. Olivocerebellar projection: a review. Adv Anat Embryol Cell Biol. 1980;64:1–140.

    Article  Google Scholar 

  138. Sugihara I, Quy PN. Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling. J Comp Neurol. 2007;500:1076–92.

    Article  PubMed  CAS  Google Scholar 

  139. Brochu G, Maler L, Hawkes R. Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol. 1990;291:538–52.

    Article  PubMed  CAS  Google Scholar 

  140. Sillitoe RV, Hawkes R. Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J Histochem Cytochem. 2002;50:235–44.

    Article  PubMed  CAS  Google Scholar 

  141. Ahn AH, Dziennis S, Hawkes R, Herrup K. The cloning of zebrin II reveals its identity with aldolase C. Development. 1994;120:2081–90.

    PubMed  CAS  Google Scholar 

  142. Ekerot CF, Larson B. Correlation between sagittal projection zones of climbing and mossy fibre paths in cat cerebellar anterior lobe. Brain Res. 1973;64:446–50.

    Article  PubMed  CAS  Google Scholar 

  143. Hanson C, Chen G, Ebner TJ. Climbing fiber afferents contributed significantly to optically recorded parasagittal banding evoked by peripheral stimulation. Soc Neurosci. 1997;23:750.

    Google Scholar 

  144. Llinas R, Sasaki K. The functional organization of the olivo-cerebellar system as examined by multiple Purkinje cell recordings. Eur J Neurosci. 1989;1:587–602.

    Article  PubMed  Google Scholar 

  145. Bower JM. Control of sensory data acquisition. Int Rev Neurobiol. 1997;41:489–513.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Michael McPhee for graphics and Kris Bettin for preparation of the manuscript. This study was supported in part by NIH grants NS18338 and NS071686-01.

Conflicts of Interest

The authors declare no current or potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Ebner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebner, T.J., Hewitt, A.L. & Popa, L.S. What Features of Limb Movements are Encoded in the Discharge of Cerebellar Neurons?. Cerebellum 10, 683–693 (2011). https://doi.org/10.1007/s12311-010-0243-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0243-0

Keywords

Navigation