Skip to main content
Log in

Cerebellar Internal Models: Implications for the Dexterous Use of Tools

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Humans have remarkable abilities in the dexterous use of tools to extend their physical capabilities. Although previous neuropsychological and functional neuroimaging studies have mainly focused on the contribution of frontal–parietal cerebral networks to skills for tool use, dense anatomical and functional connections are known to exist between the frontal–parietal regions and the lateral cerebellum, suggesting that the cerebellum also supports the information processing necessary for the dexterous use of tools. In this article, we review functional and structural imaging studies reporting that the cerebellum is related to the learning acquisition of neural mechanisms representing input–output properties of controlled objects, including tools. These studies also suggest that such mechanisms are modularly organized in the cerebellum corresponding to the different properties of objects, such as kinematic or dynamic properties and types of tools, and that they enable humans to flexibly cope with discrete changes in objects and environments by reducing interference and combining acquired modules. Based on these studies, we propose a hypothesis that the cerebellum contributes to the skillful use of tools by representing the input–output properties of tools and providing information on the prediction of the sensory consequences of manipulation with the parietal regions, which are related to multisensory processing, and information on the necessary control of tools with the premotor regions, which contribute to the control of hand movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Renzi E, Lucchelli F. Ideational apraxia. Brain. 1988;111:1173–85.

    Article  PubMed  Google Scholar 

  2. Ochipa C, Rothi LJ, Heilman KM. Conceptual apraxia in Alzheimer’s disease. Brain. 1992;115(Pt 4):1061–71.

    Article  PubMed  Google Scholar 

  3. Johnson-Frey SH. The neural bases of complex tool use in humans. Trends Cogn Sci. 2004;8:71–8.

    Article  PubMed  Google Scholar 

  4. Lewis JW. Cortical networks related to human use of tools. Neuroscientist. 2006;12:211–31.

    Article  PubMed  Google Scholar 

  5. Iriki A. The neural origins and implications of imitation, mirror neurons and tool use. Curr Opin Neurobiol. 2006;16:660–7.

    Article  PubMed  CAS  Google Scholar 

  6. Clower DM, West RA, Lynch JC, Strick PL. The inferior parietal lobule is the target of output from the superior colliculus, hippocampus, and cerebellum. J Neurosci. 2001;21:6283–91.

    PubMed  CAS  Google Scholar 

  7. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  8. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.

    Article  PubMed  CAS  Google Scholar 

  9. Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57:169–85.

    Article  PubMed  CAS  Google Scholar 

  10. Miall RC, Weir DJ, Wolpert DM, Stein JF. Is the cerebellum a Smith predictor? J Mot Behav. 1993;25:203–16.

    Article  PubMed  CAS  Google Scholar 

  11. Wolpert DM, Ghahramani Z, Jordan MI. An internal model for sensorimotor integration. Science. 1995;269:1880–2.

    Article  PubMed  CAS  Google Scholar 

  12. Flanagan JR, Wing AM. The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci. 1997;17:1519–28.

    PubMed  CAS  Google Scholar 

  13. Mehta B, Schaal S. Forward models in visuomotor control. J Neurophysiol. 2002;88:942–53.

    PubMed  Google Scholar 

  14. Imamizu H et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403:192–5.

    Article  PubMed  CAS  Google Scholar 

  15. Imamizu H, Shimojo S. The locus of visual–motor learning at the task or manipulator level: implications from intermanual transfer. J Exp Psychol Hum Percept Perform. 1995;21:719–33.

    Article  PubMed  CAS  Google Scholar 

  16. Raichle ME et al. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb Cortex. 1994;4:8–26.

    Article  PubMed  CAS  Google Scholar 

  17. Flament D, Ellermann JM, Kim SG, Ugurbil K, Ebner TJ. Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. Hum Brain Mapp. 1996;4:210–26.

    Article  PubMed  CAS  Google Scholar 

  18. Kawato M, Gomi H. The cerebellum and VOR/OKR learning models [see comments]. Trends Neurosci. 1992;15:445–53.

    Article  PubMed  CAS  Google Scholar 

  19. Kawato M, Gomi H. A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern. 1992;68:95–103.

    Article  PubMed  CAS  Google Scholar 

  20. Shidara M, Kawano K, Gomi H, Kawato M. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature. 1993;365:50–2.

    Article  PubMed  CAS  Google Scholar 

  21. Gomi H et al. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys. I. Simple spikes. J Neurophysiol. 1998;80:818–31.

    PubMed  CAS  Google Scholar 

  22. Kitazawa S, Kimura T, Yin PB. Cerebellar complex spikes encode both destinations and errors in arm movements. Nature. 1998;392:494–7.

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi Y et al. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys. II. Complex spikes. J Neurophysiol. 1998;80:832–48.

    PubMed  CAS  Google Scholar 

  24. Moonen C, Bandettini P, editors. Functional MRI. NY: Springer; 2000.

    Google Scholar 

  25. Smith AJ et al. Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci USA. 2002;99:10765–70.

    Article  PubMed  CAS  Google Scholar 

  26. Aubert A, Costalat R. A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. Neuroimage. 2002;17:1162–81.

    Article  PubMed  Google Scholar 

  27. Kida I, Hyder F. Physiology of functional magnetic resonance imaging: energetics and function. Methods Mol Med. 2006;124:175–95.

    PubMed  Google Scholar 

  28. Hounsgaard J, Yamamoto C. Dendritic spikes in Purkinje cells of the guinea pig cerebellum studied in vitro. Exp Brain Res. 1979;37:387–98.

    Article  PubMed  CAS  Google Scholar 

  29. Hockberger PE, Tseng HY, Connor JA. Fura-2 measurements of cultured rat Purkinje neurons show dendritic localization of Ca2+ influx. J Neurosci. 1989;9:2272–84.

    PubMed  CAS  Google Scholar 

  30. Ito M, Sakurai M, Tongroach P. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol Lond. 1982;324:113–34.

    PubMed  CAS  Google Scholar 

  31. Doi T, Kuroda S, Michikawa T, Kawato M. Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci. 2005;25:950–61.

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka K et al. Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron. 2007;54:787–800.

    Article  PubMed  CAS  Google Scholar 

  33. Kuroda S, Schweighofer N, Kawato M. Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci. 2001;21:5693–702.

    PubMed  CAS  Google Scholar 

  34. Tanaka K, Augustine GJ. A positive feedback signal transduction loop determines timing of cerebellar long-term depression. Neuron. 2008;59:608–20.

    Article  PubMed  CAS  Google Scholar 

  35. Ogasawara H, Kawato M. Bistable switches for synaptic plasticity. Sci Signal. 2009;2:pe7–7.

    Article  PubMed  Google Scholar 

  36. Sakurai M. Synaptic modification of parallel fibre–Purkinje cell transmission in vitro guinea-pig cerebellar slices. J Physiol Lond. 1987;394:463–80.

    PubMed  CAS  Google Scholar 

  37. Wang X, Chen G, Gao W, Ebner T. Long-term potentiation of the responses to parallel fiber stimulation in mouse cerebellar cortex in vivo. Neuroscience. 2009;162:713–22.

    Article  PubMed  CAS  Google Scholar 

  38. Kano M, Rexhausen U, Dreessen J, Konnerth A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature. 1992;356:601–4.

    Article  PubMed  CAS  Google Scholar 

  39. Mittmann W. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J Physiol. 2004;563:369–78.

    Article  PubMed  Google Scholar 

  40. Brunel N, Hakim V, Isope P, Nadal J-P, Barbour B. Optimal information storage and the distribution of synaptic weights perceptron versus Purkinje cell. Neuron. 2004;43:745–57.

    PubMed  CAS  Google Scholar 

  41. Mittmann W, Hausser M. Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. J Neurosci. 2007;27:5559–70.

    Article  PubMed  CAS  Google Scholar 

  42. Canals S, Beyerlein M, Merkle H, Logothetis NK. Functional MRI evidence for LTP-induced neural network reorganization. Curr Biol. 2009;19:398–403.

    Article  PubMed  CAS  Google Scholar 

  43. Ogasawara H, Doi T, Doya K, Kawato M. Nitric oxide regulates input specificity of long-term depression and context dependence of cerebellar learning. PLoS Comput Biol. 2007;3:e179.

    Article  PubMed  Google Scholar 

  44. Akgoren N, Fabricius M, Lauritzen M. Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation. Proc Natl Acad Sci USA. 1994;91:5903–7.

    Article  PubMed  CAS  Google Scholar 

  45. Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA. 2003;100:5461–6.

    Article  PubMed  CAS  Google Scholar 

  46. Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11:1317–29.

    Article  PubMed  CAS  Google Scholar 

  47. Haruno M, Wolpert DM, Kawato M. Mosaic model for sensorimotor learning and control. Neural Comput. 2001;13:2201–20.

    Article  PubMed  CAS  Google Scholar 

  48. Milner TE, Franklin DW, Imamizu H, Kawato M. Central control of grasp: manipulation of objects with complex and simple dynamics. Neuroimage. 2007;36:388–95.

    Article  PubMed  Google Scholar 

  49. Shadmehr R, Holcomb HH. Neural correlates of motor memory consolidation. Science. 1997;277:821–5.

    Article  PubMed  CAS  Google Scholar 

  50. Rabe K et al. Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J Neurophysiol. 2009;101:1961–71.

    Article  PubMed  CAS  Google Scholar 

  51. Krakauer JW, Ghilardi MF, Ghez C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci. 1999;2:1026–31.

    Article  PubMed  CAS  Google Scholar 

  52. Flanagan JR et al. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J Neurosci. 1999;19:RC34.

    PubMed  CAS  Google Scholar 

  53. Higuchi S, Imamizu H, Kawato M. Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex. 2007;43:350–8.

    Article  PubMed  Google Scholar 

  54. Grodd W, Hulsmann E, Lotze M, Wildgruber D, Erb M. Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp. 2001;13:55–73.

    Article  PubMed  CAS  Google Scholar 

  55. Imamizu H, Higuchi S, Toda A, Kawato M. Reorganization of brain activity for multiple internal models after short but intensive training. Cortex. 2007;43:338–49.

    Article  PubMed  Google Scholar 

  56. Krakauer JW et al. Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol. 2004;91:924–33.

    Article  PubMed  Google Scholar 

  57. Graydon FX, Friston KJ, Thomas CG, Brooks VB, Menon RS. Learning-related fMRI activation associated with a rotational visuo-motor transformation. Brain Res Cogn Brain Res. 2005;22:373–83.

    Article  PubMed  Google Scholar 

  58. Quallo MM et al. Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc Natl Acad Sci USA. 2009;106:18379–84.

    Article  PubMed  CAS  Google Scholar 

  59. Della-Maggiore V, Scholz J, Johansen-Berg H, Paus T. The rate of visuomotor adaptation correlates with cerebellar white-matter microstructure. Hum Brain Mapp. 2009;30:4048–53.

    Article  PubMed  Google Scholar 

  60. Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain. Nat Neurosci. 2005;8:679–85.

    Article  PubMed  CAS  Google Scholar 

  61. Miyawaki Y et al. Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron. 2008;60:915–29.

    Article  PubMed  CAS  Google Scholar 

  62. Toda A, Imamizu H, Kawato M, Sato MA. Reconstruction of two-dimensional movement trajectories from selected magnetoencephalography cortical currents by combined sparse Bayesian methods. Neuroimage. 2011;54:892–905.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Miho Onizuka and Nicolas Schweighofer for helpful comments on an earlier version of the manuscript. This research is supported by the Strategic Research Program for Brain Sciences (SRPBS) to MK.

Conflicts of interest

The authors declare that they have no potential conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Imamizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imamizu, H., Kawato, M. Cerebellar Internal Models: Implications for the Dexterous Use of Tools. Cerebellum 11, 325–335 (2012). https://doi.org/10.1007/s12311-010-0241-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0241-2

Keywords

Navigation