Skip to main content
Log in

The Neuropathology of Late-Onset Friedreich’s Ataxia

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Friedreich’s ataxia (FRDA) affects very young persons. In a large series, the mean ages of onset and death were 11 and 38 years, respectively. The clinical spectrum of FRDA has expanded after genetic confirmation of the mutation became a routine laboratory test. The main cause of death in juvenile-onset FRDA is cardiomyopathy whereas patients with late-onset are more likely to succumb to neurological disability or an intercurrent illness. Many patients with early onset now survive for 20 years or longer. This study made a systematic comparison of the neuropathology in 14 patients with juvenile onset and long survival, and five patients with late onset and long survival. Mean ages of onset (± standard deviation) were 10 ± 5 and 28 ± 13 years, respectively. Disease durations were 33 ± 11 and 47 ± 11 years, respectively. Cross-sectional areas of the thoracic spinal cord were greatly reduced from the normal state but did not differ between the two groups. Similarly, the neurons of dorsal root ganglia were significantly reduced in size in both juvenile- and late-onset cases of FRDA. The dentate nucleus showed severe loss of neurons as well as modification and destruction of corticonuclear terminals in all FRDA patients. Delayed atrophy of the dentate nucleus is the likely cause of the ataxic phenotype of FRDA in late-onset cases, but the reason for the delay is unknown. Frataxin levels in the dentate nucleus of two patients with late onset were similar to those of seven patients with juvenile onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harding AE. Friedreich’s ataxia: A clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981;104:589–620.

    Article  CAS  PubMed  Google Scholar 

  2. De Michele G, Filla A, Perretti A, Santoro L, Trombeta L, Santorelli F, et al. Late onset recessive ataxia with Friedreich’s disease phenotype. J Neurol Neurosurg Psychiatry. 1989;52:1398–401.

    Article  PubMed  Google Scholar 

  3. Campuzano V, Montermini L, Moltò MD, Pianese L, Cossée M, Cavalcanti F, et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:1423–7.

    Article  CAS  PubMed  Google Scholar 

  4. Dürr A, Cossée M, Agid Y, Campuzano V, Mignard C, Penet C, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. New Engl J Med. 1996;335:1169–75.

    Article  PubMed  Google Scholar 

  5. Koeppen AH. Neuropathology of the inherited ataxias. In: Manto M-U, Pandolfo M, editors. The cerebellum and its disorders. Cambridge: Cambridge University Press; 2002. p. 387–405.

    Google Scholar 

  6. Michael S, Petrocine SV, Qian J, Lamarche JB, Knutson MD, Garrick MD, et al. Iron and iron-responsive proteins in the cardiomyopathy of Friedreich’s ataxia. Cerebellum. 2007;5:257–67.

    Article  Google Scholar 

  7. Koeppen AH, Michael SC, Knutson MD, Haile DJ, Qian J, Levi S, et al. The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins. Acta Neuropathol. 2007;114:163–73.

    Article  CAS  PubMed  Google Scholar 

  8. Koeppen AH, Morral JA, Davis AN, Qian J, Petrocine SV, Knutson MD, et al. The dorsal root ganglion in Friedreich’s ataxia. Acta Neuropathol. 2009;118:763–76.

    Article  PubMed  Google Scholar 

  9. Friedreich N. Ueber Ataxie mit besonderer Berücksichtigung der hereditären Formen. Nachtrag. Virchows Arch Pathol Anat Physiol Klin Med. 1877;70:140–52.

    Article  Google Scholar 

  10. Ohta M, Offord K, Dyck PJ. Morphometric evaluation of first sacral ganglia of man. J Neurol Sci. 1974;22:73–82.

    Article  Google Scholar 

  11. Condò I, Ventura N, Malisan F, Tomassini B, Testi R. A pool of extramitochondrial frataxin that promotes cell survival. J Biol Chem. 2006;281:16750–6.

    Article  PubMed  Google Scholar 

  12. Isnard R, Kalotka H, Dürr A, Cossée M, Schmitt M, Pousset F, et al. Correlation between left ventricular hypertrophy and GAA trinucleotide repeat length in Friedreich’s ataxia. Circulation. 1997;95:2247–9.

    CAS  PubMed  Google Scholar 

  13. Wells RD. DNA triplexes and Friedreich ataxia. FASEB J. 2008;22:1625–34.

    Article  CAS  PubMed  Google Scholar 

  14. Inoue K, Hirano A, Hasson J. Friedreich’s ataxia selectively involves the large neurons of the dorsal root ganglia. Trans Am Neurol Assoc. 1979;104:75–6.

    CAS  PubMed  Google Scholar 

  15. Scharf J-H, Blumenthal H-J. Neuere Aspekte zur altersabhängigen Involution des sensiblen peripheren Nervensystems. Zeitschrift Zellforsch. 1967;78:280–302.

    Article  CAS  Google Scholar 

  16. Gardner E. Decrease in human neurons with age. Anat Rec. 1940;77:529–36.

    Article  Google Scholar 

  17. Vassilopoulos D, Spengos M, Scarpalezos S. Étude radiologique de la colonne vertébrale cervicale dans certaines maladies dégéneratives neurologiques. J Radiol Electrol. 1977;58:183–6.

    CAS  PubMed  Google Scholar 

  18. Wessel K, Schroth G, Diener HC, Müller-Forell W, Dichgans J. Significance of MRI-confirmed atrophy of the cranial spinal cord in Friedreich’s ataxia. Euro Arch Psychiat Neurol Sci. 1989;238:225–30.

    Article  CAS  Google Scholar 

  19. Mascalchi M, Salvi F, Piacentini S, Bartolozzi C. Friedreich’s ataxia: MR findings involving the cervical portion of the spinal cord. Am J Roentgenol. 1994;163:187–91.

    CAS  Google Scholar 

  20. Waldvogel D, van Gelderen P, Hallett M. Increased iron in the dentate nucleus of patients with Friedreich’s ataxia. Ann Neurol. 1999;46:123–5.

    Article  CAS  PubMed  Google Scholar 

  21. Boddaert N, Le Quan KH, Rötig A, Leroy-Willig A, Gallet S, Brunnelle F, et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood. 2007;110:401–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank the families for their permission to complete the autopsies and the pathologists who harvested the tissues. The following organizations provided financial support: Friedreich’s Ataxia Research Alliance; National Ataxia Foundation; and Neurochemical Research, Inc. The described work was completed in the research laboratories of the Veterans Affairs Medical Center, Albany, N.Y., USA.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnulf H. Koeppen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeppen, A.H., Morral, J.A., McComb, R.D. et al. The Neuropathology of Late-Onset Friedreich’s Ataxia. Cerebellum 10, 96–103 (2011). https://doi.org/10.1007/s12311-010-0235-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-010-0235-0

Keywords

Navigation