Skip to main content
Log in

The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Frataxin deficiency in Friedreich’s ataxia (FRDA) causes cardiac, endocrine, and nervous system manifestations. Frataxin is a mitochondrial protein, and adequate amounts are essential for cellular iron homeostasis. The main histological lesion in the brain of FRDA patients is neuronal atrophy and a peculiar proliferation of synaptic terminals in the dentate nucleus termed grumose degeneration. This cerebellar nucleus may be especially susceptible to FRDA because it contains abundant iron. We examined total iron and selected iron-responsive proteins in the dentate nucleus of nine patients with FRDA and nine normal controls by biochemical and microscopic techniques. Total iron (1.53 ± 0.53 μmol/g wet weight) and ferritin (206.9 ± 46.6 μg/g wet weight) in FRDA did not significantly differ from normal controls (iron: 1.78 ± 0.88 μmol/g; ferritin: 210.9 ± 9.0 μg/g) but Western blots exhibited a shift to light ferritin subunits. Immunocytochemistry of the dentate nucleus revealed loss of juxtaneuronal ferritin-containing oligodendroglia and prominent ferritin immunoreactivity in microglia and astrocytes. Mitochondrial ferritin was not detectable by immunocytochemistry. Stains for the divalent metal transporter 1 confirmed neuronal loss while endothelial cells reacting with antibodies to transferrin receptor 1 protein showed crowding of blood vessels due to collapse of the normal neuropil. Regions of grumose degeneration were strongly reactive for ferroportin. Purkinje cell bodies, their dendrites and axons, were also ferroportin-positive, and it is likely that grumose degeneration is the morphological manifestation of mitochondrial iron dysmetabolism in the terminals of corticonuclear fibers. Neuronal loss in the dentate nucleus is the likely result of trans-synaptic degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abboud S, Haile DJ (2000) A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J Biol Chem 275:19906–19912

    Article  PubMed  CAS  Google Scholar 

  2. Aguirre P, Mena N, Tapia V, Arrendondo M, Nuñez MT (2005) Iron homeostasis in neuronal cells: a role for IREG1. BMC Neurosci 6:3

    Article  PubMed  CAS  Google Scholar 

  3. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, Zara F, Canizares J, Koutnikova H, Bidichandani SI, Gellera C, Brice A, Trouillas P, De Michele G, Filla A, De Frutos R, Palau F, Patel PI, Di Donato S, Mandel JL, Cocozza S, Koenig M, Pandolfo M (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427

    Article  PubMed  CAS  Google Scholar 

  4. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  PubMed  CAS  Google Scholar 

  5. Filla A, De Michele G, Cavalcanti F, Pianese L, Monticelli A, Campanella G, Cocozza S (1996) The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia. Am J Hum Genet 59:554–560

    PubMed  CAS  Google Scholar 

  6. Garrick MD, Dolan KG, Horbinski C, Ghio AJ, Higgins D, Porubcin M, Moore EG, Hainsworth LN, Umbreit JN, Conrad ME, Feng L, Lis A, Roth JA, Singleton S, Garrick LM (2003) DMT1: A mammalian transporter for multiple metals. BioMetals 16:41–54

    Article  PubMed  CAS  Google Scholar 

  7. Hahn P, Dentchev T, Qian Y, Roault F, Harris ZL, Dunaief JL (2004) Immunolocalization and regulation of iron handling proteins ferritin and ferroportin in the retina. Mol Vis 10:598–607

    PubMed  CAS  Google Scholar 

  8. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51

    Article  PubMed  CAS  Google Scholar 

  9. Ishizawa K, Lin W-L, Tiseo P, Hone WG, Davies P, Dickson DW (2000) A qualitative and quantitative study of grumose degeneration in progressive supranuclear palsy. J Neuropathol Exp Neurol 59:513–524

    PubMed  CAS  Google Scholar 

  10. Kaneko Y, Kitamoto J, Tateishi J, Yamaguchi K (1989) Ferritin immunohistochemistry as a marker for microglia. Acta Neuropathol (Berlin) 79:129–136

    Article  CAS  Google Scholar 

  11. Knutson MD, Oukka M, Koss LM, Aydemir FD, Wessling-Resnick M (2005) Iron release from macrophages after erythrophagocytosis is up-regulated by ferroportin 1 overexpression and down-regulated by hepcidin. Proc Natl Acad Sci USA 102:1324–1328

    Article  PubMed  CAS  Google Scholar 

  12. Koeppen AH (1991) The Purkinje cell and its afferents in human hereditary ataxia. J Neuropathol Exp Neurol 50:505–514H

    PubMed  CAS  Google Scholar 

  13. Koeppen AH (1998) The hereditary ataxias. J Neuropathol Exp Neurol 57:531–543

    PubMed  CAS  Google Scholar 

  14. Koeppen AH (2002) Neuropathology of the inherited ataxias. In: Manto M-U, Pandolfo M (eds) The cerebellum and its disorders. Cambridge University Press, Cambridge, pp 387–405

    Google Scholar 

  15. Koeppen AH, Dentinger MP (1988) Brain hemosiderin and superficial siderosis of the central nervous system. J Neuropathol Exp Neurol 47:249–270

    PubMed  CAS  Google Scholar 

  16. Koeppen AH, Turok DI (1992) The cerebellar cortex and the dentate nucleus in hereditary ataxia. In: Plaitakis A (ed) Cerebellar degenerations: clinical neurobiology. Kluwer, Boston, pp 205–236

    Google Scholar 

  17. Koeppen AH, Dickson AC (2002) Tin-protoporphyrin prevents experimental superficial siderosis in rabbits. J Neuropathol Exp Neurol 61:689–701

    PubMed  CAS  Google Scholar 

  18. Koeppen AH, Dickson AC, Lamarche JB, Robitaille Y (1999) Synapses in the hereditary ataxias. J Neuropathol Exp Neurol 58:748–764

    PubMed  CAS  Google Scholar 

  19. Lamarche JB, Côté M, Lemieux B (1980) The cardiomyopathy of Friedreich’s ataxia. Morphological observations in 3 cases. Can J Neurol Sci 7:389–396

    PubMed  CAS  Google Scholar 

  20. Levi S, Corsi B, Bosisio M, Invernizzi R, Volz A, Sanford D, Arosio P, Drysdale J (2001) A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276:24437–24440

    Article  PubMed  CAS  Google Scholar 

  21. McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309

    Article  PubMed  CAS  Google Scholar 

  22. Michael S, Petrocine SV, Qian J, Lamarche JB, Knutson MD, Garrick MD, Koeppen AH (2006) Iron and iron-responsive proteins in the cardiomyopathy of Friedreich’s ataxia. Cerebellum 5:257–267

    Article  PubMed  CAS  Google Scholar 

  23. Moos T, Rosengren Nielsen T (2006) Ferroportin in the postnatal rat brain: Implications for axonal transport and neuronal export of iron. Semin Pediatr Neurol 13:149–157

    Article  PubMed  Google Scholar 

  24. Mott FW (1907) Case of Friedreich’s disease, with autopsy and systematic microscopical examination of the nervous system. Arch Neurol Psychiatr 3:180–200

    Google Scholar 

  25. Oppenheimer DR (1979) Brain lesions in Friedreich’s ataxia. Can J Neurol Sci 6:173–176

    PubMed  CAS  Google Scholar 

  26. Rötig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D, Munnich A, Rustin P (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet 17:215–217

    Article  PubMed  Google Scholar 

  27. Rossi F, Gianola S, Corvetti L (2006) The strange case of Purkinje axon regeneration and plasticity. Cerebellum 5:174–182

    Article  PubMed  Google Scholar 

  28. Roth JA, Horbinski C, Feng L, Dolan KG, Higgins D, Garrick MD (2000) Differential localization of divalent metal transporter 1 with and without iron response element in rat PC12 and sympathetic neuronal cells. J Neurosci 20:7595–75601

    PubMed  CAS  Google Scholar 

  29. Spatz H (1922) Über den Eisennachweis im Gehirn, besonders in Zentren des extrapyramidal-motorischen Systems. Z Ges Neurol Psychiat 77:261–390

    Article  CAS  Google Scholar 

  30. Urich H, Normal RM, Lloyd OC (1957) Suprasegmental lesions in Friedreich’s ataxia. Confin Neurol 17:360–371

    Article  PubMed  CAS  Google Scholar 

  31. Waldvogel D, van Gelderen P, Hallett M (1999) Increased iron in the dentate nucleus of patients with Friedreich’s ataxia. Ann Neurol 46:123–125

    Article  PubMed  CAS  Google Scholar 

  32. Wu LJ, Leenders AG, Cooperman S, Meyron-Holtz E, Smith S, Land W, Tsai RY, Berger UV, Sheng ZH, Rouault TA (2004) Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier. Brain Res 1001:108–117

    Article  PubMed  CAS  Google Scholar 

  33. Yoon T, Cowan JA (2004) Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis. J Biol Chem 279:25943–25946

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Koeppen’s laboratory is supported, in part, by the Office of Research and Development (Laboratory Medicine R&D Service) of the Department of Veterans Affairs, Washington, DC, USA. The authors received financial support from Friedreich’s Ataxia Research Alliance, Alexandria, VA, USA (AHK); National Ataxia Foundation, Minneapolis, MN, USA (AHK); Neurochemical Research, Inc., Glenmont, NY, USA (AHK); and NIH grants R01DLK59794 (MDG) and DK065064 (MDK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnulf H. Koeppen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koeppen, A.H., Michael, S.C., Knutson, M.D. et al. The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins. Acta Neuropathol 114, 163–173 (2007). https://doi.org/10.1007/s00401-007-0220-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0220-y

Keywords

Navigation