Skip to main content
Log in

Computation of Egomotion in the Macaque Cerebellar Vermis

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The nodulus and uvula (lobules X and IX of the vermis) receive mossy fibers from both vestibular afferents and vestibular nuclei neurons and are thought to play a role in spatial orientation. Their properties relate to a sensory ambiguity of the vestibular periphery: otolith afferents respond identically to translational (inertial) accelerations and changes in orientation relative to gravity. Based on theoretical and behavioral evidence, this sensory ambiguity is resolved using rotational cues from the semicircular canals. Recordings from the cerebellar cortex have identified a neural correlate of the brain's ability to resolve this ambiguity in the simple spike activities of nodulus/uvula Purkinje cells. This computation, which likely involves the cerebellar circuitry and its reciprocal connections with the vestibular nuclei, results from a remarkable convergence of spatially- and temporally-aligned otolith-driven and semicircular canal-driven signals. Such convergence requires a spatio-temporal transformation of head-centered canal-driven signals into an estimate of head reorientation relative to gravity. This signal must then be subtracted from the otolith-driven estimate of net acceleration to compute inertial motion. At present, Purkinje cells in the nodulus/uvula appear to encode the output of this computation. However, how the required spatio-temporal matching takes place within the cerebellar circuitry and what role complex spikes play in spatial orientation and disorientation remains unknown. In addition, the role of visual cues in driving and/or modifying simple and complex spike activity, a process potentially critical for long-term adaptation, constitutes another important direction for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blazquez PM, Hirata Y, Highstein SM (2004) The vestibulo-ocular reflex as a model system for motor learning: what is the role of the cerebellum? Cerebellum 3(3):188–192

    Article  PubMed  Google Scholar 

  2. Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581–609

    Article  CAS  PubMed  Google Scholar 

  3. du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibulo-ocular reflex. Annu Rev Neurosci 18:409–441

    Article  PubMed  Google Scholar 

  4. Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131

    Article  CAS  PubMed  Google Scholar 

  5. Barmack NH, Baughman RW, Errico P, Shojaku H (1993) Vestibular primary afferent projection to the cerebellum of the rabbit. J Comp Neurol 327:521–534

    Article  CAS  PubMed  Google Scholar 

  6. Carpenter MB, Stein BM, Peter P (1972) Primary vestibulocerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am J Anat 135:221–249

    Article  CAS  PubMed  Google Scholar 

  7. Kevetter GA, Perachio AA (1986) Distribution of vestibular afferents that innervate the sacculus and posterior canal in the gerbil. J Comp Neurol 254(3):410–424

    Article  CAS  PubMed  Google Scholar 

  8. Korte GE (1979) The cerebellar projection of the vestibular nerve in the cat. J Comp Neurol 184(2):265–277

    Article  CAS  PubMed  Google Scholar 

  9. Gerrits NM, Epema AH, van Linge A, Dalm E (1989) The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett 105(1–2):27–33

    Article  CAS  PubMed  Google Scholar 

  10. Kevetter GA, Leonard RB, Newlands SD, Perachio AA (2004) Central distribution of vestibular afferents that innervate the anterior or lateral semicircular canal in the Mongolian gerbil. J Vestib Res 14(1):1–15

    PubMed  Google Scholar 

  11. Ono S, Kushiro K, Zakir M, Meng H, Sato H, Uchino Y (2000) Properties of utricular and saccular nerve-activated vestibulocerebellar neurons in cats. Exp Brain Res 134(1):1–8

    Article  CAS  PubMed  Google Scholar 

  12. Brodal A, Brodal P (1985) Observations on the secondary vestibulocerebellar projections in the macaque monkey. Exp Brain Res 58(1):62–74

    Article  CAS  PubMed  Google Scholar 

  13. Epema AH, Gerrits NM, Voogd J (1990) Secondary vestibulocerebellar projections to the flocculus and unulo-nodular lobule of the rabbit: a study using HRP and double fluorescent tracer techniques. Exp Brain Res 80(1):72–82

    Article  CAS  PubMed  Google Scholar 

  14. Akaogi K-I, Ikarashi K, Kawasaki T (1994) Mossy fiber projections from the brain stem to the nodulus in the cat: an experimental study comparing the nodulus, the uvula and the flocculus. Brain Res 638(1–2):12–20

    Article  CAS  PubMed  Google Scholar 

  15. Sato Y, Kanda K-I, Ikarashi K, Kawasaki T (1989) Differential mossy fiber projections to the dorsal and ventral uvula in the cat. J Comp Neurol 279(1):149–164

    Article  CAS  PubMed  Google Scholar 

  16. Ruigrok TJ (2003) Collateralization of climbing and mossy fibers projecting to the nodulus and flocculus of the rat cerebellum. J Comp Neurol 466(2):278–298

    Article  PubMed  Google Scholar 

  17. Bigare F, Voogd J (1977) Cerebello-vestibular projections in the cat. Acta Morphol Neerl Scand 15(4):323–325

    CAS  PubMed  Google Scholar 

  18. Bernard J-F (1987) Topographical organization of olivocerebellar and corticonuclear connections in the rat-An WGA-HRP study: I. Lobules IX, X and the flocculus. J Comp Neurol 263(2):241–258

    Article  CAS  PubMed  Google Scholar 

  19. Groenewegen HJ, Voogd J (1977) Parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol 174(3):417–488

    Article  CAS  PubMed  Google Scholar 

  20. Brodal P, Brodal A (1982) Further observation on the olivocerebellar projection in the monkey. Exp Brain Res 45:71–83

    Article  CAS  PubMed  Google Scholar 

  21. Kaufman GD, Mustari MJ, Miselis RR, Perachio AA (1996) Transneuronal pathways to the vestibulocerebellum. J Comp Neurol 370:501–523

    Article  CAS  PubMed  Google Scholar 

  22. Voogd J, Gerrits NM, Ruigrok TJH (1996) Organization of the vestibulocerebellum. Ann N Y Acad Sci 781:553–579

    Article  CAS  PubMed  Google Scholar 

  23. Angelaki DE, Hess BJ (1995) Lesion of the nodulus and ventral uvula abolish steady-state off-vertical axis otolith response. J Neurophysiol 73(4):1716–1720

    CAS  PubMed  Google Scholar 

  24. Angelaki DE, Hess BJ (1995) Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol 73(5):1729–1751

    CAS  PubMed  Google Scholar 

  25. Wearne S, Raphan T, Cohen B (1998) Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula. J Neurophysiol 79:2690–2715

    CAS  PubMed  Google Scholar 

  26. Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS (2008) Lesions of the cerebellar nodulus and uvula in monkeys: effect on otolith-ocular reflexes. Prog Brain Res 171:167–172

    Article  PubMed  Google Scholar 

  27. Marini G, Provini L, Rosina A (1975) Macular input to the cerebellar nodulus. Brain Res 99(2):367–371

    Article  CAS  PubMed  Google Scholar 

  28. Marini G, Provini L, Rosina A (1976) Gravity responses of Purkinje cells in the nodulus. Exp Brain Res 24:311–323

    Article  CAS  PubMed  Google Scholar 

  29. Precht W, Simpson JI, Llin SR (1976) Responses of Purkinje cells in rabbit nodulus and uvula to natural vestibular and visual stimuli. Pflugers Arch 367(1):1–6

    Article  CAS  PubMed  Google Scholar 

  30. Fushiki H, Barmack NH (1997) Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J Neurophysiol 78(6):3083–3094

    CAS  PubMed  Google Scholar 

  31. Barmack NH, Yakhnitsa V (2003) Cerebellar climbing fibers modulate simple spikes in Purkinje cells. J Neurosci 23(21):7904–7916

    CAS  PubMed  Google Scholar 

  32. Yakhnitsa V, Barmack NH (2006) Antiphasic Purkinje cell responses in mouse uvula-nodulus are sensitive to static roll–tilt and topographically organized. Neuroscience 143(2):615–626

    Article  CAS  PubMed  Google Scholar 

  33. Barmack NH, Shojaku H (1995) Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol 74(6):2573–2589

    CAS  PubMed  Google Scholar 

  34. Maklad A, Fritzsch B (2003) Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. Dev Brain Res 140(2):223–236

    Article  CAS  Google Scholar 

  35. Barmack NH, Shojaku H (1992) Vestibularly induced slow oscillations in climbing fiber responses of Purkinje cells in the cerebellar nodulus of the rabbit. Neuroscience 50(1):1–5

    Article  CAS  PubMed  Google Scholar 

  36. Yakusheva T, Blazquez PM, Angelaki DE (2008) Frequency-selective coding of translation and tilt in macaque cerebellar nodulus and uvula. J Neurosci 28(40):9997–10009

    Article  CAS  PubMed  Google Scholar 

  37. Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE (2007) Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron 54(6):973–985

    Article  CAS  PubMed  Google Scholar 

  38. Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78(3–5):272–303

    Article  PubMed  Google Scholar 

  39. Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9(4):304–313

    Article  CAS  PubMed  Google Scholar 

  40. Angelaki DE, Shaikh AG, Green AM, Dickman JD (2004) Neurons compute internal models of the physical laws of motion. Nature 430(6999):560–564

    Article  CAS  PubMed  Google Scholar 

  41. Dickman JD, Angelaki DE, Correia MJ (1991) Response properties of gerbil otolith afferents to small angle pitch and roll tilts. Brain Res 556(2):303–310

    Article  CAS  PubMed  Google Scholar 

  42. Fernandez C, Goldberg JM, Abend WK (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35(6):978–987

    CAS  PubMed  Google Scholar 

  43. Si X, Angelaki DE, Dickman JD (1997) Response properties of pigeon otolith afferents to linear acceleration. Exp Brain Res 117(2):242–250

    Article  CAS  PubMed  Google Scholar 

  44. Angelaki DE, McHenry MQ, Dickman JD, Newlands SD, Hess BJ (1999) Computation of inertial motion: neural strategies to resolve ambiguous otolith information. J Neurosci 19(1):316–327

    CAS  PubMed  Google Scholar 

  45. Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39(5):985–995

    CAS  PubMed  Google Scholar 

  46. Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. J Neurophysiol 39(5):970–984

    CAS  PubMed  Google Scholar 

  47. Green AM, Angelaki DE (2003) Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator. J Neurosci 23(28):9265–9275

    CAS  PubMed  Google Scholar 

  48. Merfeld DM, Zupan L, Peterka RJ (1999) Humans use internal models to estimate gravity and linear acceleration. Nature 398:615–618

    Article  CAS  PubMed  Google Scholar 

  49. MacNeilage PR, Banks MS, Berger DR, Bulthoff HH (2007) A Bayesian model of the disambiguation of gravitoinertial force by visual cues. Exp Brain Res 179(2):263–290

    Article  PubMed  Google Scholar 

  50. Zupan LH, Merfeld DM (2003) Neural processing of gravito-inertial cues in humans. IV. Influence of visual rotational cues during roll optokinetic stimuli. J Neurophysiol 89(1):390–400

    Article  CAS  PubMed  Google Scholar 

  51. Glasauer S (1995) Linear acceleration perception: frequency dependence of the hilltop illusion. Acta Otolaryngol S520:37–40

    Article  Google Scholar 

  52. Glasauer S, Merfeld DM (1997) Modeling three-dimensional responses during complex motion stimulation. In: Fetter MTH, Misslisch H, Tweed D (eds) Three-dimensional kinematics of eye, head, and limb movements. Howard Academic Press, Amsterdam, pp 387–398

    Google Scholar 

  53. Green AM, Angelaki DE (2004) An integrative neural network for detecting inertial motion and head orientation. J Neurophysiol 92(2):905–925

    Article  PubMed  Google Scholar 

  54. Green AM, Angelaki DE (2007) Coordinate transformations and sensory integration in the detection of spatial orientation and self-motion: from models to experiments. Prog Brain Res 165:155–180

    Article  PubMed  Google Scholar 

  55. Green AM, Shaikh AG, Angelaki DE (2005) Sensory vestibular contributions to constructing internal models of self-motion. J Neural Eng 2(3):S164–S179

    Article  PubMed  Google Scholar 

  56. Merfeld DM (1995) Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Exp Brain Res 106(1):123–134

    CAS  PubMed  Google Scholar 

  57. Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S (2005) Vestibular perception and action employ qualitatively different mechanisms. II. VOR and perceptual responses during combined tilt & translation. J Neurophysiol 94(1):199–205

    Article  PubMed  Google Scholar 

  58. Merfeld DM, Park S, Gianna-Poulin C, Black FO, Wood S (2005) Vestibular perception and action employ qualitatively different mechanisms. I. Frequency response of VOR and perceptual responses during translation and tilt. J Neurophysiol 94(1):186–198

    Article  PubMed  Google Scholar 

  59. Merfeld DM, Zupan LH (2002) Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. J Neurophysiol 8792:819–833

    Google Scholar 

  60. Mergner T, Glasauer S (1999) A simple model of vestibular canal-otolith signal fusion. Ann N Y Acad Sci 871:430–434

    Article  CAS  PubMed  Google Scholar 

  61. Zupan LH, Merfeld DM, Darlot C (2002) Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol Cybern 86(3):209–230

    Article  CAS  PubMed  Google Scholar 

  62. Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE (2005) Sensory convergence solves a motion ambiguity problem. Curr Biol 15(18):1657–1662

    Article  CAS  PubMed  Google Scholar 

  63. Angelaki DE, Dickman JD (2000) Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses. J Neurophysiol 84(4):2113–2132

    CAS  PubMed  Google Scholar 

  64. Dickman JD, Angelaki DE (2002) Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol 88(6):3518–3533

    Article  PubMed  Google Scholar 

  65. Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE (2005) Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol 93(2):853–863

    Article  PubMed  Google Scholar 

  66. Barmack NH, Shojaku H (1992) Representation of a postural coordinate system in the nodulus of the rabbit cerebellum by vestibular climbing fiber signals. In: Shimazu H, Shinoda Y (eds) Vestibular and brain stem control of eye, head and body movements. S. Karger, Basel, pp 331–338

    Google Scholar 

  67. Shojaku H, Sato Y, Ikarashi K, Kawasaki T (1987) Topographical distribution of Purkinje cells in the uvula and the nodulus projecting to the vestibular nuclei in cats. Brain Res 416(1):100–112

    Article  CAS  PubMed  Google Scholar 

  68. Wylie DR, De Zeeuw CI, Digiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349(3):448–463

    Article  CAS  PubMed  Google Scholar 

  69. Meng H, May PJ, Dickman JD, Angelaki DE (2007) Vestibular signals in primate thalamus: properties and origins. J Neurosci 27(50):13590–13602

    Article  CAS  PubMed  Google Scholar 

  70. Liu S, Angelaki DE (2009) Vestibular signals in macaque extrastriate visual cortex are functionally appropriate for heading perception. J Neurosci 29(28):8936–8945

    Article  CAS  PubMed  Google Scholar 

  71. Britten KH, van Wezel RJ (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1(1):59–63

    Article  CAS  PubMed  Google Scholar 

  72. Gu Y, Angelaki DE, Deangelis GC (2008) Neural correlates of multisensory cue integration in macaque MSTd. Nat Neurosci 11(10):1201–1210

    Article  CAS  PubMed  Google Scholar 

  73. Gu Y, DeAngelis GC, Angelaki DE (2007) A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci 10(8):1038–1047

    Article  CAS  PubMed  Google Scholar 

  74. Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434

    Article  CAS  PubMed  Google Scholar 

  75. Seidman SH, Telford L, Paige GD (1998) Tilt perception during dynamic linear acceleration. Exp Brain Res 119(3):307–314

    Article  CAS  PubMed  Google Scholar 

  76. Kaptein RG, Van Gisbergen JA (2006) Canal and otolith contributions to visual orientation constancy during sinusoidal roll rotation. J Neurophysiol 95(3):1936–1948

    Article  PubMed  Google Scholar 

  77. Graybiel A (1952) Oculogravic illusion. AMA Arch Ophthalmol 48(5):605–615

    CAS  PubMed  Google Scholar 

  78. Clark B, Graybiel A (1963) Contributing factors in the perception of the oculogravic illusion. Am J Psychol 76:18–27

    Article  CAS  PubMed  Google Scholar 

  79. Clark B, Graybiel A (1966) Factors contributing to the delay in the perception of the oculogravic illusion. Am J Psychol 79(3):377–388

    Article  CAS  PubMed  Google Scholar 

  80. Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34(4):661–675

    CAS  PubMed  Google Scholar 

  81. Dichgans J, Held R, Young LR, Brandt T (1972) Moving visual scenes influence the apparent direction of gravity. Science 176:1217–1219

    Article  Google Scholar 

  82. Howard IP, Hu G (2001) Visually induced reorientation illusions. Perception 30(5):583–600

    Article  CAS  PubMed  Google Scholar 

  83. Jacobson GA, Rokni D, Yarom Y (2008) A model of the olivo-cerebellar system as a temporal pattern generator. Trends Neurosci 31(12):617–625

    Article  CAS  PubMed  Google Scholar 

  84. Ohyama T, Nores WL, Murphy M, Mauk MD (2003) What the cerebellum computes. Trends Neurosci 26(4):222–227

    Article  CAS  PubMed  Google Scholar 

  85. Yarom Y, Cohen D (2002) The olivocerebellar system as a generator of temporal patterns. Ann N Y Acad Sci 978:122–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by NIH R01 EY12814.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora E. Angelaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelaki, D.E., Yakusheva, T.A., Green, A.M. et al. Computation of Egomotion in the Macaque Cerebellar Vermis. Cerebellum 9, 174–182 (2010). https://doi.org/10.1007/s12311-009-0147-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0147-z

Keywords

Navigation