Skip to main content
Log in

Cerebellar Brain-Derived Neurotrophic Factor, Nerve Growth Factor, and Neurotrophin-3 Expression in Male and Female Rats Is Differentially Affected by Hypergravity Exposure During Discrete Developmental Periods

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

We previously reported that the effects of perinatal exposure to hypergravity on cerebellum and motor functions in rat neonates are strongly dependent on the specific developmental period of exposure. In the present study, we explored the hypothesis that neurodevelopmental changes are associated with altered expression of brain neurotrophins critical for normal brain growth and differentiation. We compared the effects of hypergravity exposure during four developmental periods: period I extended from gestational day (G) 8 through G15; period II from G15 to birth, period III from birth to postnatal day (P) 6; and period IV extended from G8–P12. For comparison we used stationary control (SC) neonates not exposed to hypergravity. Neurotrophins, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin 3 (NT-3) levels were measured in cerebellar homogenates prepared from postnatal day 12 male and female rat neonates using specific ELISAs. Hypergravity exposure affected individual neurotrophins differently and the effect was further determined by the period of hypergravity exposure. ANOVA showed: (1) a significant effect of the period of exposure to hypergravity on cerebellar BDNF (p = 0.009), with maximal decrease of 28.7% in males and 32.1% in females following exposure during period III; (2) a significant effect on NGF (p < 0.0001), with maximal decrease of 35.6% in male and 48.8% in female neonates following exposure during period III; (3) no statistically significant effect on NT-3 expression with a trend towards decreased expression in female rats following exposure during period IV. Although the molecular mechanisms underlying the differential neurotrophins’ response to hypergravity are not clear, an altered pattern of their expression is likely to contribute to neurodevelopmental changes and impaired sensorimotor behavior in exposed neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Suster ML, Bate M (2002) Embryonic assembly of a central pattern generator without sensory input. Nature 416:131–132

    Article  CAS  Google Scholar 

  2. Bokara KK, Brown E, McCormick R, Yallapragada PR, Rajanna S, Bettaiya R (2008) Lead-induced increase in antioxidant enzymes and lipid peroxidation products in developing rat brain. Biometals 21:9–16

    Article  CAS  PubMed  Google Scholar 

  3. Gurley GH, Jelaso AM, Ide CF, Spitsbergen JM (2007) Effects of polychlorinated biphenyls (PCBs) on expression of neurotrophic factors in C6 glial cells in culture. Neurotoxicology 28:1264–1271

    Article  CAS  PubMed  Google Scholar 

  4. Van den Hove DL, Steinbusch HW, Scheepens A, Van de Berg WD, Kooiman LA, Boosten BJ, Prickaerts J, Blanco CE (2006) Prenatal stress and neonatal rat brain development. Neuroscience 137:145–155

    Article  PubMed  CAS  Google Scholar 

  5. Burton CL, Chatterjee D, Chatterjee-Chakraborty M, Lovic V, Grella SL, Steiner M, Fleming AS (2007) Prenatal restraint stress and motherless rearing disrupts expression of plasticity markers and stress-induced corticosterone release in adult female Sprague–Dawley rats. Brain Res 1158:28–38

    Article  CAS  PubMed  Google Scholar 

  6. Mesquita AR, Pego JM, Summavielle T, Maciel P, Almeida OF, Sousa N (2007) Neurodevelopment milestone abnormalities in rats exposed to stress in early life. Neuroscience 147:1022–1033

    Article  CAS  PubMed  Google Scholar 

  7. Sajdel-Sulkowska EM (2007) Brain development, environment and sex: what can we learn from studying graviperception, gravitransduction and gravireaction of the developing CNS to altered gravity? Cerebellum 6:1–17

    Article  Google Scholar 

  8. Sajdel-Sulkowska EM, Nguon K, Rosen G, Baxter MG (2005) Purkinje cell loss and motor impairment in rats developing under hypergravity. NeuroReport 16:2037–2040

    Article  PubMed  Google Scholar 

  9. Klinstova AY, Dickson E, Yoshida R, Greenough WT (2004) Altered expression of BDNF and its high affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res 1028:92–104

    Article  CAS  Google Scholar 

  10. Zhu S-W, Pham TM, Aberg E, Brene S, Winblad B, Mohammed AH, Baumans V (2006) Neurotrophin levels and behavior in BALB/c mice: impact of intermittent exposure to individual housing and wheel running. Behav Brain Res 167:1–8

    Article  CAS  PubMed  Google Scholar 

  11. Betancourt AM, Filipov NM, Carr RL (2007) Alteration of neurotrophins in the hippocampus and cerebral cortex of young rats exposed to chlorpyrifos and methyl parathion. Toxicol Sci 100:445–55

    Article  CAS  PubMed  Google Scholar 

  12. Heaton MB, Mitchell JJ, Paiva M (1999) Ethanol-induced alterations in neurotrophin expression in developing cerebellum: relationship to periods of temporal susceptibility. Alcohol Clin Exp Res 23:1637–1642

    CAS  PubMed  Google Scholar 

  13. Heaton MB, Moore DB, Paiva M, Madorsky I, Mayer J, Shaw G (2003) The role of neurotrophic factors, apoptosis-related proteins, and endogenous antioxidants in the differential temporal vulnerability of neonatal cerebellum to ethanol. Alcohol Clin Exp Res 27:657–669

    CAS  PubMed  Google Scholar 

  14. Aloe L, Fiore M, Santucci D, Amendola T, Antonelli A, Francia N, Corazzi G, Alleva E (2001) Effect of hypergravity on the mouse basal expression of NGF and BDNF in the retina, visual cortex and geniculate nucleus: correlative aspects with NPY immunoreactivity. Neurosci Lett 302:29–32

    Article  CAS  PubMed  Google Scholar 

  15. Francia N, Santucci D, Aloe L, Alleva E (2004) Neurobehavioral coping to altered gravity: endogenous responses of neurotrophins. Prog Brain Res 146:185–194

    Article  CAS  PubMed  Google Scholar 

  16. Nguon K, Ladd B, Sajdel-Sulkowska EM (2006) Exposure to altered gravity during specific developmental periods differentially affects growth, development, the cerebellum and motor functions in male and female rats. Adv Space Res 38:1138–1147

    Article  PubMed  Google Scholar 

  17. Nguon K, Ladd B, Sajdel-Sulkowska EM (2006) Development of motor coordination and cerebellar structure in male and female rat neonates exposed to hypergravity. Adv Space Res 38:1089–1099

    Article  Google Scholar 

  18. Sajdel-Sulkowska EM, Ming X, Koibuchi N (2009) Increase in cerebellar neurotrophin-3 and oxidative stress in autism. Cerebellum (in press)

  19. Katoh-Semba R, Semba R, Takeuchi IK, Kato K (1998) Age-related changes in levels of brain-derived neurotrophic factor in selected regions of rats, normal mice and senescence-accelerated mice: a comparison to those of nerve growth factor and neurotrophin-3. Neurosci Res 31:227–234

    Article  CAS  PubMed  Google Scholar 

  20. Das KP, Chao SL, White LD, Haines WT, Harry GJ, Tilson HA, Barone S Jr (2001) Differential patterns of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 mRNA and protein levels in developing regions of rat brain. Neuroscience 103:739–761

    Article  CAS  PubMed  Google Scholar 

  21. Feng MJ, Yan SE, Yan QS (2005) Effects of prenatal alcohol exposure on brain-derived neurotrophic factor and its receptor tyrosine kinase B in offspring. Brain Res 1042:125–132

    Article  CAS  PubMed  Google Scholar 

  22. Aloe L (2006) Alcohol intake during prenatal life affects neuroimmune mediators and brain neurogenesis. Ann Ist Super Sanita 42:17–21

    CAS  PubMed  Google Scholar 

  23. Briscoe TA, Tolcos M, Dieni S, Loeliger M, Rees SM (2006) Prenatally compromised neurons respond to brain-derived neurotrophic factor treatment in vitro. NeuroReport 17:1385–1389

    Article  CAS  PubMed  Google Scholar 

  24. Park IK, Lee KY, Song CW, Kwon HJ, Park MS, Lee MY, Lee KJ, Jeong YG, Lee CH, Ha KS, Rhee MH, Lee KY, Kim MK (2002) Immunohistochemical localization of nerve growth factor, glial fibrilary acidic protein and ciliary neurotrophic factor in mesencephalon, rhombencephalon, and spinal cord of developing Mongolian gerbil. J Vet Sci 3:239–245

    PubMed  Google Scholar 

  25. Soderstrom S, Ebendal T (1995) The levels of neurotrophin-3 protein in the rat brain determined by enzyme immunoassay show a pattern distinct from nerve growth factor. Neurosci Lett 189:5–8

    Article  CAS  PubMed  Google Scholar 

  26. Katoh-Semba R, Takeuchi IK, Semba R, Kato K (1997) Distribution of brain derived neurotrophic factor in rats and its changes with development in the brain. J Neurochem 69:34–42

    CAS  PubMed  Google Scholar 

  27. Sato M, Suzuki K, Nakanishi S (2006) Expression profile of BDNF-responsive genes during cerebellar granule cell development. Biochem Biophys Res Commun 341:304–309

    Article  CAS  PubMed  Google Scholar 

  28. Bandtlow CE, Meyer M, Lindholm D, Spranger M, Heumann R, Thoenen H (1990) Regional and cellular codistribution of interlukin 1 beta and nerve growth factor mRNA in the adult rat brain: possible relationship to the regulation of nerve growth factor synthesis. J Cell Biol 111:1701–17011

    Article  CAS  PubMed  Google Scholar 

  29. Lauterborn JC, Isackson PJ, Gall CM (1994) Cellular localization of NGF and NT-3 mRNAs in postnatal rat forebrain. Mol Cell Neurosci 5:46–62

    Article  CAS  PubMed  Google Scholar 

  30. Muller Y, Tangre K, Clos J (1997) Autocrine regulation of apoptosis and bcl-2 expression by nerve growth factor in early differentiating cerebellar granule neurons involves low affinity neurotrophin receptor. Neurochem Int 31:177–191

    Article  CAS  PubMed  Google Scholar 

  31. Ohira K, Funatsu N, Nakamura S, Hayashi M (2004) Expression of BDNF and TrkB receptor subtypes in the postnatal developing Purkinje cells of monkey cerebellum. Gene Expr Patterns 4:257–261

    Article  CAS  PubMed  Google Scholar 

  32. Zhou XF, Rush RA (1994) Localization of neurotrophin-3-like immunoreactivity in the rat central nervous system. Brain Res 643:162–172

    Article  CAS  PubMed  Google Scholar 

  33. Cohen-Cory S, Dreyfus CF, Black IB (1989) Expression of high- and low-affinity nerve growth factor receptors by Purkinje cells in the developing rat cerebellum. Exp Neurol 105:104–109

    Article  CAS  PubMed  Google Scholar 

  34. Heese k, Hock C, Otten U (1998) Inflammatory signals induce neurotrophin expression in human microglial cells. J Neurochem 70:699–707

    CAS  PubMed  Google Scholar 

  35. Mitsuo K, Schwartz JP (1993) Chronic treatment of newborn rats with naltrexone alters astrocyte production of nerve growth factor. J Mol Neurosci 4:21–28

    Article  CAS  PubMed  Google Scholar 

  36. Miklic S, Juric DM, Carman-Krzan M (2004) Differences in the regulation of BDNF and NGF synthesis in cultured neonatal rat astrocytes. Int J Dev Neurosci 22:119–130

    Article  CAS  PubMed  Google Scholar 

  37. Segal RA, Takahashi H, Mckay RD (1992) Changes in neurotrophin responsiveness during the development of cerebellar granule cells. Neuron 6:1041–1052

    Article  Google Scholar 

  38. Shalizi A, Lehtinen M, Gaudilliere B, Donovan N, Han J, Konishi Y, Bonni A (2003) Characterization of neurotrophin signaling mechanism that mediates neuron survival in a temporarily specific pattern. J Neurosci 23:7326–7336

    CAS  PubMed  Google Scholar 

  39. Kaplan DR, Miller FD (2007) Developing with BDNF: a moving experience. Neuron 55:53–68

    Article  CAS  Google Scholar 

  40. Condorwlli DF, Dell’Albani P, Timmusk T, Mudo G, Belluardo N (1998) Differential regulation of BDNF and NT-3 mRNA levels in primary cultures of rat cerebellar neurons. Neurochem Int 32:87–91

    Article  Google Scholar 

  41. Larkfors L, Lindsay RM, Alderson RF (1996) Characterization of the response of Purkinje cells to neurotrophin treatment. J Neurochem 66:1362–1373

    Article  CAS  PubMed  Google Scholar 

  42. Light KE, Brown DP, Newton BW, Belcher SM, Kane CJ (2002) Ethanol-induced alterations of neurotrophin receptor expression on Purkinje cells in the neonatal rat cerebellum. Brain Res 924:71–81

    Article  CAS  PubMed  Google Scholar 

  43. Legrand C, Clos J (1991) Biochemical, immunocytochemical and morphological evidence for an interaction between thyroid hormone and nerve growth factor in the developing cerebellum of normal and hypothyroid rats. Dev Neurosci 13:382–96

    Article  CAS  PubMed  Google Scholar 

  44. Li S, Qiu F, Xu A, Price SM, Xiang M (2004) Barhl1 regulates migration and survival of cerebellar granule cells by controlling expression of the neurotrophin-3 gene. J Neurosci 24:3104–3114

    Article  CAS  PubMed  Google Scholar 

  45. Lindholm D, Castren E, Tsoulfas P, Kolbeck R, Berzaghi Mda P, Leingartner A, Heisenberg CP, Tessarollo L, Parada LF, Thoenen H (1993) Neurotrophin-3 induced triiodothyronine in cerebellar granule cells promotes Purkinje cell differentiation. J Cell Biol 122:443–450

    Article  CAS  PubMed  Google Scholar 

  46. Heaton MB, Mitchell JJ, Paiva M (2000) Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum. J Neurobiol 45:95–104

    Article  CAS  PubMed  Google Scholar 

  47. Kafitz KW, Rose CR, Thoenen H, Konnerth A (1999) Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401:918–921

    Article  CAS  PubMed  Google Scholar 

  48. Kiss P, Tamas A, Lubics A, Szalai M, Szalontay L, Lengvari I, Reglodi D (2005) Development of neurological reflexes and motor coordination in rats neonatally treated with monosodium glutamate. Neurotox Res 8:235–244

    Article  CAS  PubMed  Google Scholar 

  49. Sherstnev VV, Pletnikov MV, Storozheva ZI, Proshin AT (1997) The selective effect of monoclonal antibodies to the nerve growth protein A3G7 on the central mechanisms of different types of defensive behavior in adult rats. Zh Vyssh Nerv Deiat Im I P Pavlova 47:965–971

    CAS  PubMed  Google Scholar 

  50. Sadakata T, Kakegawa W, Mizoguchi A, Washida M, Katoh-Semba R, Shutoh F, Okamoto T, Nakashima H, Kimura K, Tanaka M, Sekine Y, Itohara S, Yuzaki M, Nagao S, Furuichi T (2007) Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci 27:2472–2482

    Article  CAS  PubMed  Google Scholar 

  51. Song L, Zheng J, Li H, Jia N, Suo Z, Cai Q, Bai Z, Cheng D, Zhu Z (2008) Prenatal stress causes oxidative damage to mitochondrial DNA in hippocampus of offspring rats. Neurochem Res 34(4):739–745

    Article  PubMed  CAS  Google Scholar 

  52. Venkataraman P, Krishnamoorthy G, Vengatesh G, Srinivasan N, Aruldhas MM, Arunakaran J (2008) Protective role of melatonin on PCB (aroclor 1, 254) induced oxidative stress and changes in acetylcholine esterase and membrane bound ATPases in cerebellum, cerebral cortex and hippocampus of adult rat brain. Int J Dev Neurosci 26:585–591

    Article  CAS  PubMed  Google Scholar 

  53. Francia N, Simeoni M, Petruzzi S, Santucci D, Aloe L, Alleva E (2006) Repeated acute exposure to hypergravity during early development subtly affect CD-1 mouse neurobehavioral profile. Brain Res Bull 15:560–572

    Article  Google Scholar 

  54. Santucci D, Francia N, Trincia V, Chiarotti F, Aloe L, Alleva E (2009) A mouse model of neurobehavioral response to altered gravity conditions: an ontogenic study. Behav Brain Res 197:109–118

    Article  PubMed  Google Scholar 

  55. Santucci D, Corazzi G, Francia N, Antonelli A, Aloe L, Alleva E (2000) Neurobehavioral effects of hypergravity conditions in the adult mice. NeuroReport 11:3353–3356

    Article  CAS  PubMed  Google Scholar 

  56. Ploughman M, Windle V, MacLellan CL, White N, Dore JJ, Corbett D (2009) Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 40:1490–1495

    Article  CAS  PubMed  Google Scholar 

  57. Chaturvedi RK, Shukla S, Seth K, Agrawal AK (2006) Nerve growth factor increases survival of dopaminergic graft, rescue nigral dopaminergic neurons and restores functional deficits in rat model of Parkinson’s disease. Neurosci Lett 398:44–49

    Article  CAS  PubMed  Google Scholar 

  58. Gustave Dit Duflo S, Gestreau C, Lacour M (2000) Fos expression in the rat brain after exposure to graviinertial force changes. Brain Res 861(2):333–344

    Article  CAS  PubMed  Google Scholar 

  59. Bruce LL (2003) Adaptations of the vestibular system to short and long-term exposures to altered gravity. Adv Space Res 32:1533–1539

    Article  CAS  PubMed  Google Scholar 

  60. Gardiner J, Barton D, Overall R, Marc J (2009) Neurotrophic support and oxidative stress: converging effects in the normal and diseased nervous system. Neuroscientist 15:47–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Japan Society for the Promotion of Science for support and specifically for the Fellowship awarded to E.M. Sajdel-Sulkowska.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth M. Sajdel-Sulkowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajdel-Sulkowska, E.M., Xu, M. & Koibuchi, N. Cerebellar Brain-Derived Neurotrophic Factor, Nerve Growth Factor, and Neurotrophin-3 Expression in Male and Female Rats Is Differentially Affected by Hypergravity Exposure During Discrete Developmental Periods. Cerebellum 8, 454–462 (2009). https://doi.org/10.1007/s12311-009-0122-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-009-0122-8

Keywords

Navigation