Skip to main content

Lesion-Symptom Mapping of the Human Cerebellum

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

Although the function of the cerebellum cannot be inferred from lesion data alone, it is still of major scientific and clinical interest to assess whether lesions of a given cerebellar area lead to specific behavioral deficits. The introduction of high-resolution structural brain imaging and new analysis methods has led to significant improvement in the ability to draw such conclusions. Lesion-symptom mapping is now possible with a spatial resolution at the level of individual lobules and nuclei of the cerebellum. The investigation of patients with defined focal lesions yields the greatest potential for obtaining meaningful correlations between lesion site and behavioral deficits. In smaller groups of patients, overlay plots and subtraction analysis are good options. If larger groups of patients are accessible, different statistical techniques are available to compare behavior and lesion site on a voxel-by-voxel basis. Although localization in degenerative cerebellar disorders is less accurate because of the diffuse nature of the disease, advanced volumetric and statistical methods provide meaningful information about the functional subdivisions of the cerebellum. This chapter highlights the current developments of lesion-symptom mapping in human cerebellar lesion studies. Examples show that meaningful correlations between lesion site and behavioral data can be obtained both in patients with degenerative as well as focal cerebellar disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abele M, Minnerop M, Urbach H et al (2007) Sporadic adult onset ataxia of unknown etiology: a clinical, electrophysiological and imaging study. J Neurol 254:1384–1389

    Article  CAS  PubMed  Google Scholar 

  • Alcauter S, Barrios FA, Díaz R et al (2011) Gray and white matter alterations in spinocerebellar ataxia type 7: an in vivo DTI and VBM study. Neuroimage 55:1–7

    Article  CAS  PubMed  Google Scholar 

  • Amarenco P (1991) The spectrum of cerebellar infarctions. Neurology 41:973–979

    Article  CAS  PubMed  Google Scholar 

  • Amarenco P, Rosengart A, DeWitt LD et al (1993) Anterior inferior cerebellar artery territory infarcts. Mechanisms and clinical features. Arch Neurol 50:154–161

    Article  CAS  PubMed  Google Scholar 

  • Anderson SW, Damasio H, Tranel D (1990) Neuropsychological impairments associated with lesions caused by tumor or stroke. Arch Neurol 47:397–405

    Article  CAS  PubMed  Google Scholar 

  • Baier B, Dieterich M (2011) Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions. Neurology 76:361–365

    Article  PubMed  Google Scholar 

  • Baier B, Stoeter P, Dieterich M (2009) Anatomical correlates of ocular motor deficits in cerebellar lesions. Brain 132:2114–2124

    Article  CAS  PubMed  Google Scholar 

  • Baier B, Dieterich M, Stoeter P et al (2010) Anatomical correlate of impaired covert visual attentional processes in patients with cerebellar lesions. J Neurosci 30:3770–3776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkhof F, Scheltens P (2002) Imaging of white matter lesions. Cerebrovasc Dis 2:21–30

    Article  Google Scholar 

  • Barth A, Bogousslavsky J, Regli F (1993) The clinical and topographic spectrum of cerebellar infarcts: a clinical-magnetic resonance imaging correlation study. Ann Neurol 33:451–456

    Article  CAS  PubMed  Google Scholar 

  • Bates E, Wilson SM, Saygin AP et al (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6:448–450

    Article  CAS  PubMed  Google Scholar 

  • Bazin PL, Deistung A, Reichenbach JR, Timmann D (2018) Automated segmentation of cerebellar nuclei from ultra-high-field quantitative susceptibility maps with multi-atlas shape fusion. Abstract presented at ISMRM (Paris)

    Google Scholar 

  • Bogovic JA, Jedynak B, Rigg R et al (2013) Approaching expert results using a hierarchical cerebellum parcellation protocol for multiple inexpert human raters. Neuroimage 64:616–629

    Article  PubMed  Google Scholar 

  • Brain Development Cooperative Group (2012) Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI study of normal brain development. Cereb Cortex 22:1–12

    Article  Google Scholar 

  • Brandauer B, Hermsdörfer J, Beck A et al (2008) Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol 119:2528–2537

    Article  CAS  PubMed  Google Scholar 

  • Brett M, Leff AP, Rorden C et al (2001) Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14:486–500

    Article  CAS  PubMed  Google Scholar 

  • Caplan LR (1996) Cerebellar infarcts. In: Caplan LR (ed) Posterior circulation disease: clinical findings, diagnosis, and management. Blackwell Scientific, Cambridge, MA, pp 492–543

    Google Scholar 

  • Chaves CJ, Caplan LR, Chung CS et al (1994) Cerebellar infarcts in the New England Medical Center Posterior Circulation Stroke Registry. Neurology 44:1385–1390

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Herskovits EH (2010) Voxel-based Bayesian lesion-symptom mapping. Neuroimage 49:597–602

    Article  PubMed  Google Scholar 

  • Christensen A, Giese MA, Sultan F et al (2014) An intact action-perception coupling depends on the integrity of the cerebellum. J Neurosci 34:6707–6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausi S, Bozzali M, Leggio MG et al (2009) Quantification of gray matter changes in the cerebral cortex after isolated cerebellar damage: a voxel-based morphometry study. Neuroscience 162:827–835

    Article  CAS  PubMed  Google Scholar 

  • Conway JE, Chou D, Clatterbuck RE et al (2001) Hemangioblastomas of the central nervous system in von Hippel-Lindau syndrome and sporadic disease. Neurosurgery 48:55–62

    CAS  PubMed  Google Scholar 

  • de Haan B, Karnath HO (2018) A hitchhiker’s guide to lesion-behaviour mapping. Neuropsychologia 115:5–16

    Article  PubMed  Google Scholar 

  • de Haan B, Clas P, Juenger H (2015) Fast semi-automated lesion demarcation in stroke. Neuroimage Clin 9:69–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Deistung A, Stefanescu MR, Ernst TM et al (2016) Structural and functional magnetic resonance imaging of the cerebellum: considerations for assessing cerebellar ataxias. Cerebellum 15:21–25

    Article  PubMed  Google Scholar 

  • Della-Maggiore V, Scholz J, Johansen-Berg H et al (2009) The rate of visuomotor adaptation correlates with cerebellar white-matter microstructure. Hum Brain Mapp 30:4048–4053

    Article  PubMed  PubMed Central  Google Scholar 

  • Deoni SC, Catani M (2007) Visualization of the deep cerebellar nuclei using quantitative T1 and rho magnetic resonance imaging at 3 Tesla. Neuroimage 37:1260–1266

    Article  PubMed  Google Scholar 

  • Diedrichsen J (2006) A spatially unbiased atlas template of the human cerebellum. Neuroimage 33:127–138

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Zotow E (2015) Surface-based display of volume-averaged cerebellar data. PLoS One 7:e0133402

    Article  CAS  Google Scholar 

  • Diedrichsen J, Balsters JH, Flavell J et al (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Maderwald S, Küper M et al (2011) Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. Neuroimage 54:1786–1794

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova A, Weber J, Redies C et al (2002) MRI atlas of the human cerebellar nuclei. Neuroimage 17:240–255

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova A, Zeljko D, Schwarze F et al (2006) Probabilistic 3D MRI atlas of the human cerebellar dentate/interposed nuclei. Neuroimage 30:12–25

    Article  CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (2003) An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol 89:634–639

    Article  PubMed  Google Scholar 

  • Eckmiller R, Westheimer G (1983) Compensation of oculomotor deficits in monkeys with neonatal cerebellar ablations. Exp Brain Res 49:315–326

    Article  CAS  PubMed  Google Scholar 

  • Ernst TM, Thürling M, Müller S et al (2017) Modulation of 7 T fMRI signal in the cerebellar cortex and nuclei during acquisition, extinction, and reacquisition of conditioned eyeblink responses. Hum Brain Mapp 38:3957–3974

    Article  PubMed  PubMed Central  Google Scholar 

  • Exner C, Weniger G, Irle E (2004) Cerebellar lesions in the PICA but not SCA territory impair cognition. Neurology 63:2132–2135

    Article  PubMed  Google Scholar 

  • Fiez JA, Damasio H, Grabowski TJ (2000) Lesion segmentation and manual warping to a reference brain: intra- and interobserver reliability. Hum Brain Mapp 9:192–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank RJ, Damasio H, Grabowski TJ (1997) Brainvox: an interactive, multimodal visualization and analysis system for neuroanatomical imaging. Neuroimage 5:13–30

    Article  CAS  PubMed  Google Scholar 

  • Ganos C, Zittel S, Minnerop M et al (2014) Clinical and neurophysiological profile of four German families with spinocerebellar ataxia type 14. Cerebellum 13:89–96

    Article  PubMed  Google Scholar 

  • Gerwig M, Dimitrova A, Kolb FP et al (2003) Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain 126:71–94

    Article  CAS  PubMed  Google Scholar 

  • Giedd JN, Snell JW, Lange N et al (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–560

    Article  CAS  PubMed  Google Scholar 

  • Granziera C, Schmahmann JD, Hadjikhani N et al (2009) Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS One 4:e5101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grodd W, Hülsmann E, Lotze M et al (2001) Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp 13:55–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habas C, Cabanis EA (2007) Cortical projection to the human red nucleus: complementary results with probabilistic tractography at 3 T. Neuroradiology 49:777–784

    Article  PubMed  Google Scholar 

  • Hernandez-Castillo CR, Diaz R, Campos-Romo A, Fernandez-Ruiz J (2017) Neural correlates of ataxia severity in spinocerebellar ataxia type 3/Machado-Joseph disease. Cerebellum Ataxias 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Ilg M, Giese MA, Gizewski ER et al (2008) The influence of focal cerebellar lesions on the control and adaptation of gait. Brain 131:2913–2927

    Article  CAS  PubMed  Google Scholar 

  • Jernigan TL, Tallal P (1990) Late childhood changes in brain morphology observable with MRI. Dev Med Child Neurol 32:379–385

    Article  CAS  PubMed  Google Scholar 

  • Jissendi P, Baudry S, Balériaux D (2008) Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3 T. J Neuroradiol 35:42–50

    Article  CAS  PubMed  Google Scholar 

  • Kansal K, Yang Z, Fishman AM et al (2017) Structural cerebellar correlates of cognitive and motor dysfunctions in cerebellar degeneration. Brain 140:707–720

    PubMed  Google Scholar 

  • Karnath HO, Steinbach JP (2011) Do brain tumours allow valid conclusions on the localization of human brain functions? – Objections. Cortex 47:1004–1006

    Article  PubMed  Google Scholar 

  • Karnath HO, Himmelbach M, Rorden C (2002) The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain 125:350–360

    Article  PubMed  Google Scholar 

  • Karnath HO, Zopf R, Johannsen L et al (2005) Normalized perfusion MRI to identify common areas of dysfunction: patients with basal ganglia neglect. Brain 128:2462–2469

    Article  PubMed  Google Scholar 

  • Karnath HO, Sperber C, Rorden C (2018) Mapping human brain lesions and their functional consequences. Neuroimage 165:180–189

    Article  CAS  PubMed  Google Scholar 

  • Kase CS, Norrving B, Levine SR et al (1993) Cerebellar infarction. Clinical and anatomic observations in 66 cases. Stroke 24:76–83

    Article  CAS  PubMed  Google Scholar 

  • Kimberg DY, Coslett HB, Schwartz MF (2007) Power in voxel-based lesion-symptom mapping. J Cogn Neurosci 19:1067–1080

    Article  PubMed  Google Scholar 

  • King M, Hernandez-Castillo C, Diedrichsen J (2017) Towards a multi-function mapping of the cerebellar cortex. Brain 140:522–524

    Article  PubMed  Google Scholar 

  • Kinkingnéhun S, Volle E, Pélégrini-Issac M et al (2007) A novel approach to clinical-radiological correlations: Anatomo-Clinical Overlapping Maps (AnaCOM): method and validation. Neuroimage 37:1237–1249

    Article  PubMed  Google Scholar 

  • Kitamura K, Nakayama K, Kosaka S et al (2008) Diffusion tensor imaging of the cortico-ponto-cerebellar pathway in patients with adult-onset ataxic neurodegenerative disease. Neuroradiology 50:285–292

    Article  PubMed  Google Scholar 

  • Klockgether T (2008) The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum 7:101–105

    Article  CAS  PubMed  Google Scholar 

  • Konczak J, Schoch B, Dimitrova A et al (2005) Functional recovery of children and adolescents after cerebellar tumour resection. Brain 128:1428–1441

    Article  PubMed  Google Scholar 

  • Küper M, Dimitrova A, Thürling M et al (2011) Evidence for a motor and a non-motor domain in the human dentate nucleus – an fMRI study. Neuroimage 54:2612–2622

    Article  PubMed  Google Scholar 

  • Küper M, Thürling M, Maderwald S et al (2012) Structural and functional magnetic resonance imaging of the human cerebellar nuclei. Cerebellum 11(2):314–324

    Article  PubMed  Google Scholar 

  • Lasek K, Lencer R, Gaser C et al (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129:2341–2352

    Article  CAS  PubMed  Google Scholar 

  • Lechtenberg R, Gilman S (1978) Speech disorders in cerebellar disease. Ann Neurol 3:285–290

    Article  CAS  PubMed  Google Scholar 

  • Leggio MG, Tedesco AM, Chiricozzi FR et al (2008) Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain 131:1332–1343

    Article  CAS  PubMed  Google Scholar 

  • Luft AR, Skalej M, Welte D et al (1998) A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI. Magn Reson Med 40:143–151

    Article  CAS  PubMed  Google Scholar 

  • Lukas C, Schöls L, Bellenberg B et al (2006) Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett 408:230–235

    Article  CAS  PubMed  Google Scholar 

  • Lukas C, Bellenberg B, Köster O et al (2011) A new sulcus-corrected approach for assessing cerebellar volume in spinocerebellar ataxia. Psychiatry Res 193(2):123–130

    Article  PubMed  Google Scholar 

  • Maderwald S, Thürling M, Küper M et al (2012) Direct visualization of cerebellar nuclei in patients with focal cerebellar lesions and its application for lesion-symptom mapping. Neuroimage 63:1421–1431

    Article  CAS  PubMed  Google Scholar 

  • Mah YH, Husain M, Rees G, Nachev P (2014) Human brain lesion-deficit inference remapped. Brain 137:2522–2531

    Article  PubMed  PubMed Central  Google Scholar 

  • Makris N, Schlerf JE, Hodge SM et al (2005) MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. Neuroimage 25:1146–1160

    Article  PubMed  Google Scholar 

  • Marinkovic S, Kovacevic M, Gibo H et al (1995) The anatomical basis for the cerebellar infarcts. Surg Neurol 44:450–460

    Article  CAS  PubMed  Google Scholar 

  • Mason R, Miller LE, Baker JF et al (1998) Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations. J Neurophysiol 79:537–544

    Article  CAS  PubMed  Google Scholar 

  • Medina J, Kimberg DY, Chatterjee A et al (2010) Inappropriate usage of the Brunner-Munzel test in recent voxel-based lesion-symptom mapping studies. Neuropsychologia 48:341–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowacki A, Schlaier J, Debove I, Pollo C (2018) Validation of diffusion tensor imaging tractography to visualize the dentatorubrothalamic tract for surgical planning. J Neurosurg 23:1–10

    Google Scholar 

  • Oh ME, Driever PH, Khajuria RK et al (2017) DTI fiber tractography of cerebro-cerebellar pathways and clinical evaluation of ataxia in childhood posterior fossa tumor survivors. J Neurooncol 131:267–276

    Article  PubMed  Google Scholar 

  • Patay Z, Parra C, Hawk H et al (2014) Quantitative longitudinal evaluation of diaschisis-related cerebellar perfusion and diffusion parameters in patients with supratentorial hemispheric high-grade gliomas after surgery. Cerebellum 13:580–587

    Article  PubMed  Google Scholar 

  • Pfefferbaum A, Mathalon DH, Sullivan EV et al (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51:874–887

    Article  CAS  PubMed  Google Scholar 

  • Rabe K, Diedrichsen J, Lally N et al (2009) Cerebellar structures involved in adaptation to visuomotor rotation and to force field perturbation. Program no. 460.5/BB29 2009 Neuroscience Meeting Planner. Society for Neuroscience, Chicago, Online

    Google Scholar 

  • Rashidi M, DaSilva VR, Minagar A et al (2003) Nonmalignant pediatric brain tumors. Curr Neurol Neurosci Rep 3:200–205

    Article  PubMed  Google Scholar 

  • Ravizza SM, McCormick CA, Schlerf JE et al (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129:306–320

    Article  PubMed  Google Scholar 

  • Raz N, Gunning-Dixon F, Head D et al (2001) Age and sex differences in the cerebellum and the ventral pons: a prospective MR study of healthy adults. AJNR Am J Neuroradiol 22:1161–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rentiya Z, Khan NS, Ergun E et al (2017) Distinct cerebellar regions related to motor and cognitive performance in SCA6 patients. Neuropsychologia 107:25–30

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter S, Dimitrova A, Maschke M et al (2005) Degree of cerebellar ataxia correlates with three-dimensional MRI-based cerebellar volume in pure cerebellar degeneration. Eur Neurol 54:23–27

    Article  PubMed  Google Scholar 

  • Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during the development: evidence from a series of children surgically treated for posterior fossa tumors. Brain 123: 1051–1061

    Article  PubMed  Google Scholar 

  • Rorden C, Karnath HO (2004) Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nat Rev Neurosci 5:813–819

    Article  PubMed  CAS  Google Scholar 

  • Rorden C, Karnath HO, Bonilha L (2007) Improving lesion-symptom mapping. J Cogn Neurosci 19:1081–1088

    Article  PubMed  Google Scholar 

  • Rorden C, Fridriksson J, Karnath HO (2009) An evaluation of traditional and novel tools for lesion behavior mapping. Neuroimage 44:1355–1362

    Article  PubMed  Google Scholar 

  • Rüb U, Brunt ER, Petrasch-Parwez E et al (2006) Degeneration of ingestion-related brainstem nuclei in spinocerebellar ataxia type 2, 3, 6 and 7. Neuropathol Appl Neurobiol 32:635–649

    Article  PubMed  Google Scholar 

  • Rueckriegel SM, Driever PH, Blankenburg F et al (2010) Differences in supratentorial damage of white matter in pediatric survivors of posterior fossa tumors with and without adjuvant treatment as detected by magnetic resonance diffusion tensor imaging. Int J Radiat Oncol Biol Phys 76:859–866

    Article  PubMed  Google Scholar 

  • Sasaki H, Kojima H, Yabe I et al (1998) Neuropathological and molecular studies of spinocerebellar ataxia type 6 (SCA6). Acta Neuropathol (Berl) 95:199–204

    Article  CAS  Google Scholar 

  • Schmahmann JD, Doyon J, Toga AW et al (2000) MRI atlas of the human cerebellum. Academic, San Diego

    Google Scholar 

  • Schoch B, Dimitrova A, Gizewski ER et al (2006) Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage 30:36–51

    Article  CAS  PubMed  Google Scholar 

  • Schöls L, Linnemann C, Globas C (2008) Electrophysiology in spinocerebellar ataxias: spread of disease and characteristic findings. Cerebellum 7:198–203

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB, Borkert J, Wolf S et al (2010) Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 49:158–168

    Article  PubMed  Google Scholar 

  • Seghier ML, Ramlackhansingh A, Crinion J et al (2008) Lesion identification using unified segmentation-normalisation models and fuzzy clustering. Neuroimage 41:1253–1266

    Article  PubMed  Google Scholar 

  • Shallice T (1988) From neuropsychology to mental structure. Cambridge University Press, Cambridge/New York/Melbourne

    Book  Google Scholar 

  • Soelva V, Hernáiz Driever P, Abbushi A et al (2013) Fronto-cerebellar fiber tractography in pediatric patients following posterior fossa tumor surgery. Childs Nerv Syst 29:597–607

    Article  PubMed  Google Scholar 

  • Stefanescu MR, Dohnalek M, Maderwald S et al (2015) Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich’s ataxia. Brain 138: 1182–1197

    Article  PubMed  PubMed Central  Google Scholar 

  • Steinlin M, Imfeld S, Zulauf P et al (2003) Neuropsychological long-term sequelae after posterior fossa tumour resection during childhood. Brain 126:1998–2008

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Georg Thieme Verlag, New York

    Google Scholar 

  • Tatu L, Moulin T, Bogousslavsky J et al (1996) Arterial territories of human brain: brainstem and cerebellum. Neurology 47:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Teive HA, Ashizawa T (2015) Primary and secondary ataxias. Curr Opin Neurol 28:413–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Tellmann S, Bludau S, Eickhoff S et al (2015) Cytoarchitectonic mapping of the human brain cerebellar nuclei in stereotaxic space and delineation of their co-activation patterns. Front Neuroanat 9:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Thach WT, Kane SA, Mink JW et al (1992) Cerebellar output, multiple maps and modes of control in movement coordination. In: Llinas R, Sotelo C (eds) The cerebellum revisited. Springer, New York/Heidelberg, pp 283–300

    Chapter  Google Scholar 

  • Thieme A, Thürling M, Galuba J et al (2013) Storage of a naturally acquired conditioned response is impaired in patients with cerebellar degeneration. Brain 136:2063–2076

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson RF, Steinmetz JE (2009) The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162:732–755

    Article  CAS  PubMed  Google Scholar 

  • Thürling M, Küper M, Stefanescu R et al (2011) Activation of the dentate nucleus in a verb generation task: a 7 T MRI study. Neuroimage 7:1184–1191

    Article  Google Scholar 

  • Timmann D, Konczak J, Ilg W et al (2009) Current advances in lesion-symptom mapping of the human cerebellum. Neuroscience 162:836–851

    Article  CAS  PubMed  Google Scholar 

  • Tohgi H, Takahashi S, Chiba K et al (1993) Cerebellar infarction. Clinical and neuroimaging analysis in 293 patients. The Tohoku Cerebellar Infarction Study Group. Stroke 24:1697–1670

    Article  CAS  PubMed  Google Scholar 

  • Trouillas P, Takayanagi T, Hallett M et al (1997) International Cooperative Ataxia Rating Scale for pharmacological assessment of the cerebellar syndrome. The Ataxia Neuropharmacology Committee of the World Federation of Neurology. J Neurol Sci 145:205–211

    Article  CAS  PubMed  Google Scholar 

  • Urban PP, Wicht S, Vukurevic G et al (2001) Dysarthria in acute ischemic stroke: lesion topography, clinicoradiologic correlation, and etiology. Neurology 56:1021–1027

    Article  CAS  PubMed  Google Scholar 

  • van Baarsen KM, Kleinnijenhuis M, Jbabdi S et al (2016) A probabilistic atlas of the cerebellar white matter. Neuroimage 124:724–732

    Article  PubMed  Google Scholar 

  • Vogt O (1905) Die myelogenetische Gliederung des Cortex cerebelli. J Psychol Neurol V(6): 235–250

    Google Scholar 

  • Wilke M, de Haan B, Juenger H et al (2011) Manual, semi-automated, and automated delineation of chronic brain lesions: a comparison of methods. Neuroimage 56:2038–2046

    Article  PubMed  Google Scholar 

  • Wintermark M, Albers GW, Alexandrov AV et al (2008) Acute stroke imaging research roadmap. Stroke 39:1621–1628

    Article  PubMed  Google Scholar 

  • Yang Q, Hashizume Y, Yoshida M et al (2000) Morphological Purkinje cell changes in spinocerebellar ataxia type 6. Acta Neuropathol (Berl) 100:371–376

    Article  CAS  Google Scholar 

  • Yang Z, Ye C, Bogovic JA (2016) Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease. Neuroimage 127:435–444

    Article  PubMed  Google Scholar 

  • Zuzak TJ, Poretti A, Drexel B et al (2008) Outcome of children with low-grade cerebellar astrocytoma: long-term complications and quality of life. Childs Nerv Syst 24:1447–1455

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Timmann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Timmann, D., Küper, M., Gizewski, E.R., Schoch, B., Donchin, O. (2020). Lesion-Symptom Mapping of the Human Cerebellum. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_72-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_72-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics