Skip to main content
Log in

Expression Profiling of the MAP Kinase Phosphatase Family Reveals a Role for DUSP1 in the Glioblastoma Stem Cell Niche

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

The dual specificity phosphatases (DUSPs) constitute a family of stress-induced enzymes that provide feedback inhibition on mitogen-activated protein kinases (MAPKs) critical in key aspects of oncogenic signaling. While described in other tumor types, the landscape of DUSP mRNA expression in glioblastoma (GB) remains largely unexplored. Interrogation of the REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT) revealed induction (DUSP4, DUSP6), repression (DUSP2, DUSP7–9), or mixed (DUSP1, DUSP5, DUSP10, DUSP15) DUSP transcription of select DUSPs in bulk tumor specimens. To resolve features specific to the tumor microenvironment, we searched the Ivy Glioblastoma Atlas Project (Ivy GAP) repository, which highlight DUSP1, DUSP5, and DUSP6 as the predominant family members induced within pseudopalisading and perinecrotic regions. The inducibility of DUSP1 in response to hypoxia, dexamethasone, or the chemotherapeutic agent camptothecin was confirmed in GB cell lines and tumor-derived stem cells (TSCs). Moreover, we show that loss of DUSP1 expression is a characteristic of TSCs and correlates with expression of tumor stem cell markers in situ (ABCG2, PROM1, L1CAM, NANOG, SOX2). This work reveals a dynamic pattern of DUSP expression within the tumor microenvironment that reflects the cumulative effects of factors including regional ischemia, chemotherapeutic exposure among others. Moreover, our observation regarding DUSP1 dysregulation within the stem cell niche argue for its importance in the survival and proliferation of this therapeutically resistant population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DUSP1:

Dual specificity phosphatase 1

GB:

Glioblastoma

TSC:

Tumor stem cell

DEX:

Dexamethasone

CPT:

Camptothecin

LE:

Leading edge

CT:

Bulk cellular tumor

CTpan:

Cellular tumor pseudopalisading around necrosis

CTpnz:

Cellular tumor perinecrotic zone

References

  1. Rong Y et al (2006) 'Pseudopalisading' necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65(6):529–539

    Article  PubMed  Google Scholar 

  2. Persano L et al (2011) The three-layer concentric model of glioblastoma: cancer stem cells, microenvironmental regulation, and therapeutic implications. Sci World J 11:1829–1841

    Article  Google Scholar 

  3. Vartanian A et al (2014) GBM's multifaceted landscape: highlighting regional and microenvironmental heterogeneity. Neuro-Oncology 16(9):1167–1175

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li Z et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Z et al. (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. In: Cancer Cell. Elsevier Ltd. p 501–513

  6. Vitucci M et al (2013) Cooperativity between MAPK and PI3K signaling activation is required for glioblastoma pathogenesis. Neuro-Oncology 15(10):1317–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100–3112

    Article  CAS  PubMed  Google Scholar 

  8. Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60(3):261–310

    Article  CAS  PubMed  Google Scholar 

  9. De Witt Hamer PC (2010) Small molecule kinase inhibitors in glioblastoma: a systematic review of clinical studies. Neuro-Oncology 12(3):304–316

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yu H et al (2012) Constitutive expression of MAP kinase phosphatase-1 confers multi-drug resistance in human glioblastoma cells. Cancer Res Treat 44(3):195–201

    Article  PubMed  PubMed Central  Google Scholar 

  11. Messina S et al (2011) Dual-specificity phosphatase DUSP6 has tumor-promoting properties in human glioblastomas. Oncogene 30(35):3813–3820

    Article  CAS  PubMed  Google Scholar 

  12. Waha A et al (2010) Epigenetic downregulation of mitogen-activated protein kinase phosphatase MKP-2 relieves its growth suppressive activity in glioma cells. Cancer Res 70(4):1689–1699

    Article  CAS  PubMed  Google Scholar 

  13. Wayne J et al (2006) ERK regulation upon contact inhibition in fibroblasts. Mol Cell Biochem 286(1–2):181–189

    Article  CAS  PubMed  Google Scholar 

  14. Sakaue H et al (2004) Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem 279(38):39951–39957

    Article  CAS  PubMed  Google Scholar 

  15. Laderoute KR et al (1999) Mitogen-activated protein kinase phosphatase-1 (MKP-1) expression is induced by low oxygen conditions found in solid tumor microenvironments. A candidate MKP for the inactivation of hypoxia-inducible stress-activated protein kinase/c-Jun N-terminal protein kinase activity. J Biol Chem 274(18):12890–12897

    Article  CAS  PubMed  Google Scholar 

  16. Lin YM et al (2008) Dexamethasone reduced invasiveness of human malignant glioblastoma cells through a MAPK phosphatase-1 (MKP-1) dependent mechanism. Eur J Pharmacol 593(1–3):1–9

    Article  CAS  PubMed  Google Scholar 

  17. Scarpace L et al. (2015) Data from REMBRANDT. The Cancer Imaging Archive. Available from: https://doi.org/10.7937/K9/TCIA.2015.588OZUZB

  18. Zhang Y et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ivy (2015) Ivy Glioblastoma Atlas Project Available from: http://glioblastoma.alleninstitute.org/rnaseq

  20. NCI (2015) The cancer genome atlas; Available from: https://www.cancer.gov/

  21. Galli R et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021

    Article  CAS  PubMed  Google Scholar 

  22. Inuzuka H et al (1999) Differential regulation of immediate early gene expression in preadipocyte cells through multiple signaling pathways. Biochem Biophys Res Commun 265(3):664–668

    Article  CAS  PubMed  Google Scholar 

  23. Sahu M, Mallick B (2016) An integrative approach predicted co-expression sub-networks regulating properties of stem cells and differentiation. Comput Biol Chem 64:250–262

    Article  CAS  PubMed  Google Scholar 

  24. Boulding T et al (2016) Differential roles for DUSP family members in epithelial-to-mesenchymal transition and cancer stem cell regulation in breast cancer. PLoS One 11(2):e0148065

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bleau AM, Huse JT, Holland EC (2009) The ABCG2 resistance network of glioblastoma. Cell Cycle 8(18):2936–2944

    Article  PubMed  Google Scholar 

  26. Hjelmeland AB et al (2011) Twisted tango: brain tumor neurovascular interactions. Nat Neurosci 14(11):1375–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bradshaw A et al (2016) Cancer stem cell hierarchy in glioblastoma Multiforme. Front Surg 3:21

    PubMed  PubMed Central  Google Scholar 

  28. Martinez-Lozada Z et al (2014) Activation of sodium-dependent glutamate transporters regulates the morphological aspects of oligodendrocyte maturation via signaling through calcium/calmodulin-dependent kinase IIbeta's actin-binding/−stabilizing domain. Glia 62(9):1543–1558

    Article  PubMed  PubMed Central  Google Scholar 

  29. Roybon L et al (2009) Neurogenin2 directs granule neuroblast production and amplification while NeuroD1 specifies neuronal fate during hippocampal neurogenesis. PLoS One 4(3):e4779

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shen WH et al (2006) Mitogen-activated protein kinase phosphatase 2: a novel transcription target of p53 in apoptosis. Cancer Res 66(12):6033–6039

    Article  CAS  PubMed  Google Scholar 

  31. Li M et al (2003) The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. J Biol Chem 278(42):41059–41068

    Article  CAS  PubMed  Google Scholar 

  32. Liu YX et al (2008) DUSP1 is controlled by p53 during the cellular response to oxidative stress. Mol Cancer Res 6(4):624–633

    Article  CAS  PubMed  Google Scholar 

  33. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287–294

    Article  CAS  PubMed  Google Scholar 

  34. Esteller M et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354

    Article  CAS  PubMed  Google Scholar 

  35. Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003

    Article  CAS  PubMed  Google Scholar 

  36. Ferguson BS et al (2016) Mitogen-dependent regulation of DUSP1 governs ERK and p38 signaling during early 3T3-L1 adipocyte differentiation. J Cell Physiol 231(7):1562–1574

    Article  CAS  PubMed  Google Scholar 

  37. Kim DY, Rhee I, Paik J (2014) Metabolic circuits in neural stem cells. Cell Mol Life Sci 71(21):4221–4241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Z, Theus MH, Wei L (2006) Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Develop Growth Differ 48(8):513–523

    Article  CAS  Google Scholar 

  39. Wu JJ et al (2006) Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab 4(1):61–73

    Article  CAS  PubMed  Google Scholar 

  40. Meletis K et al (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133(2):363–369

    Article  CAS  PubMed  Google Scholar 

  41. Cancer Genome Atlas Research, N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Article  Google Scholar 

  42. Li J et al (2001) Transcriptional induction of MKP-1 in response to stress is associated with histone H3 phosphorylation-acetylation. Mol Cell Biol 21(23):8213–8224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brondello J (1999) Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science 286(5449):2514–2517

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by awards from the National Institutes of Health to Marc W. Halterman (R01-NS076617) and Bradley N. Mills (F31-CA180358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc W. Halterman.

Electronic supplementary material

Fig. S1

Characterization of GB TSC differentiation. Flow cytometry contour plots (a) and geometric mean histogram representations (b) of primitive TSCs (red) and 3-day serum-differentiated dTSCs (blue) for expression of the stem cell marker SOX2, mature glial marker GLAST1, and mature neuronal marker NEUROD1 (n = 1). (GIF 132 kb)

High resolution image (EPS 2128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mills, B.N., Albert, G.P. & Halterman, M.W. Expression Profiling of the MAP Kinase Phosphatase Family Reveals a Role for DUSP1 in the Glioblastoma Stem Cell Niche. Cancer Microenvironment 10, 57–68 (2017). https://doi.org/10.1007/s12307-017-0197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-017-0197-6

Keywords

Navigation