Skip to main content

Advertisement

Log in

Angiotropism, Pericytic Mimicry and Extravascular Migratory Metastasis in Melanoma: An Alternative to Intravascular Cancer Dissemination

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

For more than 15 years, angiotropism in melanoma has been emphasized as a marker of extravascular migration of tumor cells along the abluminal vascular surface, unveiling an alternative mechanism of tumor spread distinct from intravascular dissemination. This mechanism has been termed extravascular migratory metastasis (EVMM). During EVMM, angiotropic tumor cells migrate in a ‘pericytic-like’ manner (pericytic mimicry) along the external surfaces of vascular channels, without intravasation. Through this pathway, melanoma cells may spread to nearby or more distant sites. Angiotropism is a prognostic factor predicting risk for metastasis in human melanoma, and a marker of EVMM in several experimental models. Importantly, analogies of EVMM and pericytic mimicry include neural crest cell migration, vasculogenesis and angiogenesis, and recent studies have suggested that the interaction between melanoma cells and the abluminal vascular surface induce differential expression of genes reminiscent of cancer migration and embryonic/stem cell state transitions. A recent work revealed that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression via angiotropism and migration along the abluminal vascular surface. Finally, recent data using imaging of melanoma cells in a murine model have shown the progression of tumor cells along the vascular surfaces. Taken together, these data provide support for the biological phenomenon of angiotropism and EVMM, which may open promising new strategies for reducing or preventing melanoma metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Orgaz JL, Sanz-Moreno V (2013) Emerging molecular targets in melanoma invasion and metastasis. Pigment Cell Melanoma Res 26:39–57

    Article  CAS  PubMed  Google Scholar 

  3. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE, Herlyn M (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65:9328–9337

    Article  CAS  PubMed  Google Scholar 

  4. Fukunaga-Kalabis M, Roesch A, Herlyn M (2011) From cancer stem cells to tumor maintenance in melanoma. J Invest Dermatol 131:1600–1604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Girouard SD, Murphy GF (2011) Melanoma stem cells: not rare, but well done. Lab Invest 91:647–664

    Article  PubMed  Google Scholar 

  6. Bailey CM, Morrison JA, Kulesa PM (2012) Melanoma revives an embryonic migration program to promote plasticity and invasion. Pigment Cell Melanoma Res 25:573–583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Wilder RJ (1956) The historical development of the concept of metastasis. J Mt Sinaï Hosp 23:728–734

    CAS  Google Scholar 

  8. Sleeman JP, Cady B, Pantel K (2012) The connectivity of lymphogenous and hematogenous tumor cell dissemination: biological insights and clinical implications. Clin Exp Metastasis 29:737–746

    Article  PubMed  Google Scholar 

  9. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70(14):5649–69, Jul 15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Paterlini-Bréchot P. (2011). Organ-specific markers in circulating tumor cell screening: an early indicator of metastasis-capable malignancy. Future Oncol. Jul;7 (7):849–71. doi: 10.2217/fon.11.32. Review. PubMed PMID: 21732757.

  11. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  12. Lugassy C, Eyden BP, Christensen L, Escande JP (1997) Angio-tumoral complex in human malignant melanoma characterised by free laminin: ultrastructural and immunohistochemical observations. J Submicrosc Cytol Pathol 29(1):19–28

    CAS  PubMed  Google Scholar 

  13. Lugassy C, Barnhill RL, Christensen L (2000) Melanoma and extravascular migratory metastasis. J Cutan Pathol 27(9):481

    Article  CAS  PubMed  Google Scholar 

  14. Lugassy C, Barnhill RL (2004) Angiotropic malignant melanoma and extravascular migratory metastasis: description of 36 cases with emphasis on a new mechanism of tumour spread. Pathology 36:485–490

    Article  PubMed  Google Scholar 

  15. Lugassy C, Péault B, Wadehra M, Kleinman HK, Barnhill RL (2013) Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties? PigmentCell Melanoma Res 26(5):746–54

    Article  Google Scholar 

  16. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3:362–374

    Article  CAS  PubMed  Google Scholar 

  17. Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, Kohlmeyer J, Riesenberg S, van den Boorn-Konijnenberg D, Hömig-Hölzel C, Reuten R, Schadow B, Weighardt H, Wenzel D, Helfrich I, Schadendorf D, Bloch W, Bianchi ME, Lugassy C, Barnhill RL, Koch M, Fleischmann BK, Förster I, Kastenmüller W, Kolanus W, Hölzel M, Gaffal E, Tüting T (2014) Ultraviolet radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507(7490):109–13

    Article  CAS  PubMed  Google Scholar 

  18. Van Es SL, Colman M, Thompson JF, McCarthy SW, Scolyer RA (2008) Angiotropism is an independent predictor of local recurrence and in-transit metastasis in primary cutaneous melanoma. Am J Surg Pathol 32(9):1396–403

    Article  PubMed  Google Scholar 

  19. Levy MJ, Gleeson FC, Zhang L (2009) Endoscopic ultrasound fine-needle aspiration detection of extravascular migratory metastasis from a remotely located pancreatic cancer. Clin Gastroenterol Hepatol 7(2):246

    Article  PubMed  Google Scholar 

  20. Zbytek B, Carlson JA, Granese J, Ross J, Mihm MC, Slominski A (2008) Current concepts of metastasis in melanoma. Expert Rev Dermatol 3(5):569–585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Arias AM (2001) Epithelial mesenchymal interactions in cancer and development. Cell 105:425–431

    Article  CAS  PubMed  Google Scholar 

  22. Lugassy C, Barnhill RL. Angiotropic melanoma and extravascular migratory metastasis: a review. Adv Anat Pathol. May;14 (3):195–201 Review

  23. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–90

    Article  CAS  PubMed  Google Scholar 

  24. Le Douarin NM, Creuzet S, Couly G, Dupin E (2004) Neural crest cell plasticity and its limits. Development 131:4637–4650

    Article  PubMed  Google Scholar 

  25. Perris R, Perissinotto D (2000) Role of the extracellular matrix during neural crest cell migration. Mech Dev 95:3–21

    Article  CAS  PubMed  Google Scholar 

  26. Schwarz Q, Maden CH, Vieira JM, Ruhrberg C (2009) Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. PNAS 106:6164–6169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Nagy N, Mwizerwa O, Yaniv K, Carmel L, Pieretti-Vanmarcke R, Weinstein BM, Goldstein AM (2009) Endothelial cells promote migration and proliferation of enteric neural crest cells via beta1 integrin signaling. Dev Biol 330:263–272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7(4):246–55

    Article  CAS  PubMed  Google Scholar 

  29. Kulesa PM, Kasemeier-Kulesa JC, Teddy JM, Margaryan NV, Seftor EA, Seftor RE, Hendrix MJ (2006) Reprogramming metastatic melanoma cells to assume a neural crest cell-like phenotype in an embryonic microenvironment. Proc Natl Acad Sci U S A 103:3752–3757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Weiss L (1986) Metastatic inefficiency: causes and consequences. Cancer Rev 3:1–24

    Google Scholar 

  31. Poste G, Fidler IJ (1980) The pathogenesis of cancer metastasis. Nature 283:139–146

    Article  CAS  PubMed  Google Scholar 

  32. Talmadge JE, Fidler IJ (2010) AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res 70:5649–5669

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573

    Article  Google Scholar 

  34. Fidler IJ (2002) The organ microenvironment and cancer metastasis. Differentiation 70:498–505

    Article  PubMed  Google Scholar 

  35. Drerup CM, Wiora HM, Topczewski J, Morris JA (2009) Disc1 regulates foxd3 and sox10 expression, affecting neural crest migration and differentiation. Development 136:2623–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Li A, Ma Y, Yu X et al (2011) Rac1 drives melanoblast organization during mouse development by orchestrating pseudopod-driven motility and cell-cycle progression. Dev Cell 21:722–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hirschi KK, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10 T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  39. Armulik A, Abramsson A, Betsholtz C (2005) Pericyte recruitment during angiogenesis. Circ Res 97:512–523

    Article  CAS  PubMed  Google Scholar 

  40. Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  41. Yurchenco PD, Patton BL (2009) Developmental and pathogenic mechanisms of basement membrane assembly. Curr Pharm Des 15:1277–1294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228

    Article  CAS  PubMed  Google Scholar 

  43. Barnhill RL, Dy K, Lugassy C (2002) Angiotropism in cutaneous melanoma: a prognostic factor strongly predicting risk for metastasis. J Invest Dermatol 119:705–706

    Article  CAS  PubMed  Google Scholar 

  44. Wilmott J, Haydu L, Bagot M, Zhang Y, Jakrot V, McCarthy S, Lugassy C, Thompson J, Scolyer R, Barnhill R (2012) Angiotropism is an independent predictor of microscopic satellites in primary cutaneous melanoma. Histopathology 61:889–898

    Article  PubMed  Google Scholar 

  45. Lugassy C, Lazar V, Dessen P, van den Oord JJ, Winnepenninckx V, Spatz A, Bagot M, Bensussan A, Janin A, Eggermont AM, Barnhill RL (2011) Gene expression profiling of human angiotropic primary melanoma: selection of 15 differentially expressed genes potentially involved in extravascular migratory metastasis. Eur J Cancer 47:1267–1275

    Article  CAS  PubMed  Google Scholar 

  46. Lugassy C, Kleinman HK, Fernandez PM, Patierno SR, Webber MM, Ghanem G, Spatz A, Barnhill RL (2002) Human melanoma cell migration along capillary-like structures in vitro: a new dynamic model for studying extravascular migratory metastasis. J Invest Dermatol 119:703–704

    Article  CAS  PubMed  Google Scholar 

  47. Lugassy C, Kleinman HK, Engbring JA, Welch DR, Harms JF, Rufner R, Ghanem G, Patierno SR, Barnhill RL (2004) Angiotropism and pericyte-like location of GFP melanoma cells: ex vivo and in vivo studies of extravascular migratory metastasis. Am J Pathol 164:11911198

    Article  Google Scholar 

  48. Zadran S, McMickle R, Shackelford D, Kleinman H, Barnhill R, Lugassy C (2013) Monitoring extra-vascular migratory metastasis (EVMM) of migrating cancer cells using an in vitro co-culture system. Protoc exch 22:2013

    Google Scholar 

  49. Lugassy C, Kleinman HK, Vernon SE, Welch DR, Barnhill RL (2007) C16 laminin peptide increases angiotropic extravascular migration of human melanoma cells in a shell-less chick chorioallantoic membrane assay. Br J Dermatol 157:780–782.6

    Article  CAS  PubMed  Google Scholar 

  50. Winnepenninckx V, Lazar V, Michiels S et al (2006) Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst 98(7):472–82

    Article  CAS  PubMed  Google Scholar 

  51. Dixon J, Jones NC, Sandell LL et al (2006) Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci U S A 103(36):13403–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Duband JL, Thiery JP (1987) Distribution of laminin and collagens during avian neural crest development. Development 101(3):461–78

    CAS  PubMed  Google Scholar 

  53. Engbring JA, Kleinman HK (2003) Extracellular matrix and malignancy. J Pathol 200:465–470

    Article  CAS  PubMed  Google Scholar 

  54. Tzu J, Marinkovich MP (2008) Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol 40(2):199–214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Durbeej M (2010) Laminins. Cell Tissue Res 339(1):259–68

    Article  CAS  PubMed  Google Scholar 

  56. Lugassy C, Shahsafaei A, Bonitz P, Busam KJ, Barnhill RL (1999) Tumor microvessels in melanoma express the beta-2 chain of laminin Implications for melanoma metastasis. J Cutan Pathol 26:222–226

    Article  CAS  PubMed  Google Scholar 

  57. Lugassy C, Dickersin GR, Christensen L et al (1999) Ultrastructural and immunohistochemical studies of the periendothelial matrix in human melanoma: evidence for an amorphous matrix containing laminin. J Cutan Pathol 26:78–83

    Article  CAS  PubMed  Google Scholar 

  58. Nomizu M, Kuratomi Y, Song SY et al (1997) Identification of cell binding sequences in mouse laminin gamma1 chain by systematic peptide screening. J Biol Chem 272:32198–32205

    Article  CAS  PubMed  Google Scholar 

  59. Kuratomi Y, Nomizu M, Tanaka K et al (2002) Laminin gamma 1 chain peptide, C-16 (KAFDITYVRLKF), promotes migration, MMP-9 secretion, and pulmonary metastasis of B16-F10 mouse melanoma cells. Br J Cancer 86:1169–1173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Lugassy C, Torres-Muñoz JE, Kleinman HK, Ghanem G, Vernon SE, Barnhill RL (2009) Over-expression of malignancy-associated laminins and laminin receptors by angiotropic human melanoma cells in a chick chorioallantoic membrane model. J Cutan Pathol 36(12):1237–43

    Article  PubMed  Google Scholar 

  61. Lugassy C, Wadehra M, Li X, Corselli M, Akhavan D, Binder SW, Péault B, Cochran AJ, Mischel PS, Kleinman HK, Barnhill RL (2013) Pilot study on “pericytic mimicry” and potential embryonic/stem cell properties of angiotropic melanoma cells interacting with the abluminal vascular surface. Cancer Microenviron 6:19–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Kubota Y, Kleinman HK, Martin GR, Lawley TJ (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598

    Article  CAS  PubMed  Google Scholar 

  63. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe’er J, Trent JM, Meltzer PS, Hendrix MJ (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155:739–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Valiente M, Obenauf AC, Jin X, Chen Q, Zhang XH, Lee DJ, Chaft JE, Kris MG, Huse JT, Brogi E, Massagué J (2014) Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell 156(5):1002–16

    Article  CAS  PubMed  Google Scholar 

  65. Donnem T, Hu J, Ferguson M, Adighibe O, Snell C, Harris AL, Gatter KC, Pezzella F (2013) Vessel co-option in primary human tumors and metastases: an obstacle to effective anti-angiogenic treatment? Cancer Med 2(4):427–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Shi H, Kong X, Ribas A, Lo RS (2011) Combinatorial treatments that overcome PDGFRb-driven resistance of melanoma cells to V600EB-RAF inhibition. Cancer Res 71:5067–5074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Lugassy C, Scolyer R, Long G, Menzies A, Mischel P, Barnhill RL (2014) PDGFBR expression in anti-BRAF resistant melanoma: are angiotropic melanoma cells a source of BRAF resistance and disease progression? J Cutan Pathol 41:159–160

    Google Scholar 

  68. Seftor RE, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV, Hendrix MJ (2012) Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. Am J Pathol 181:1115–1125

    Article  CAS  PubMed  Google Scholar 

  69. Barnhill RL, Busam KJ, From L, Bagot M, Lugassy C, Berwick M (2011) Inter-observer concordance for the recognition of angiotropism in human melanoma. Pigment Cell Melanoma Res 24(3):582–3

    Article  PubMed  Google Scholar 

  70. Farin A, Suzuki SO, Weiker M, Goldman JE, Bruce JN, Canoll P (2006) Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia 53:799–808

    Article  PubMed  Google Scholar 

  71. Wesseling P, Ruiter DJ, Burger PC (1997) Angiogenesis in brain tumors: pathobiological and clinical aspects. J Neurooncol 32:253–265

    Article  CAS  PubMed  Google Scholar 

  72. Lugassy C, Haroun RI, Brem H, Tyler BM, Jones RV, Fernandez PM, Patierno SR, Kleinman HK, Barnhill RL (2002) Pericytic-like angiotropism of glioma and melanoma cells. Am J Dermatopathol 24(6):473–8

    Article  PubMed  Google Scholar 

  73. Dirks PB (2001) Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration. J Neurooncol 53:203–212

    Article  CAS  PubMed  Google Scholar 

  74. Suzuki SO, Kitai R, Llena J, Lee SC, Goldman JE, Shafit-Zagardo B (2002) MAP-2e, a novel MAP-2 isoform, is expressed in gliomas and delineates tumor architecture and patterns of infiltration. J Neuropathol Exp Neurol 61:403–412

    CAS  PubMed  Google Scholar 

  75. Cheng L, Huang Z, Zhou W et al (2013) Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153:139–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Lugassy C, Barnhill RL, Kleinman HK. (2013) Comment on line: Omission of references to prior work related to Cell publication: “Cheng et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth”. Cell. July http://www.cell.com/abstract/S0092-8674(13)00210-9#Comments.

  77. Levy MJ, Gleeson FC, Zhang L (2009) Endoscopic ultrasound fine-needle aspiration detection of extravascular migratory metastasis from a remotely located pancreatic cancer. Clin Gastroenterol Hepatol 7:246–248

    Article  PubMed  Google Scholar 

  78. Liebig C, Ayala G, Wilks JA, Berger DH, Albo D (2009) Perineural invasion in cancer: a review of the literature. Cancer 115(15):3379–91

    Article  CAS  PubMed  Google Scholar 

  79. Lugassy C, Vernon SE, Warner JW, Le CQ, Manyak M, Patierno SR, Barnhill RL (2005) Angiotropism of human prostate cancer cells: implications for extravascular migratory metastasis. BJU Int 95(7):1099–103

    Article  PubMed  Google Scholar 

  80. Dyke JM, Crook ML, Platten M, Stewart CJ (2014) Extravascular migratory metastasis in gynaecological carcinosarcoma. Histopathology 65(3):363–70

    Article  PubMed  Google Scholar 

  81. Mravic M, Asatrian G, Soo C, Lugassy C, Barnhill RL, Dry SM, Peault B, James AW (2014) From pericytes to perivascular tumors: correlates between pathology, stem cell biology, and tissue engineering. Int Orthop 38(9):1819–24

    Article  PubMed  Google Scholar 

  82. Martignoni G, Pea M, Reghellin D, Zamboni G, Bonetti F (2008) PEComas: the past, the present and the future. Virchows Arch 452(2):119–32

    Article  PubMed Central  PubMed  Google Scholar 

  83. Hirayama R, Sato K, Hirokawa K, Chang MP, Mishima Y, Makinodan T (1984) Different metastatic modes of malignant melanoma implanted in the ear of young and old mice. Cancer Immunol Immunother 18(3):209–14

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

In vivo confocal imaging shown in Fig. 5 was performed at the California NanoSystems Institute (CNSI) Advanced Light Microscopy/Spectroscopy Shared Resource Facility at UCLA with support from a NIH/National Center for Advancing Translational Science UCLA CTSI Grant (UL1TR000124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Lugassy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugassy, C., Zadran, S., Bentolila, L.A. et al. Angiotropism, Pericytic Mimicry and Extravascular Migratory Metastasis in Melanoma: An Alternative to Intravascular Cancer Dissemination. Cancer Microenvironment 7, 139–152 (2014). https://doi.org/10.1007/s12307-014-0156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-014-0156-4

Keywords

Navigation