Skip to main content

Advertisement

Log in

Tumour Microenvironment: Overview with an Emphasis on the Colorectal Liver Metastasis Pathway

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

The tumour microenvironment (TME) represents a dynamic network that plays an important role in tumour initiation, proliferation, growth, and metastasis. Cell behaviour may be regulated by interplay of molecular interactions involving positive and negative reinforcement as well as a high level of cross-talk, which determines this system. Additionally, cancer involves cell proliferation, its malignancy defined by the tumour’s ability to break down normal tissue architecture and by a dynamic process of invasion and metastasis. The metastatic cascade is regulated by a chain of molecular steps which triggers the progression of the developing cancer cell in the primary tumour into a number of transformations, leading to invasion and proceeding to metastases. Tumour-associated macrophages (TAMs) play a key-role in the progression from inflammatory conditions to cancer; TAMs are also capable of infiltrating the tumour microenvironment. Furthermore, myeloid-derived suppressor cells (MDSCs), a population of inhibitory immune cells, have been reported to increase in various cancer types, although characterising human MDSCs remains difficult, as their phenotype is quite variable. The future of cancer treatment is likely to involve creating more drugs that target these elements as well as others. An overview of the tumour’s microenvironment is, therefore, presented in this paper, focusing on the metastatic pathways of primary colorectal cancer to the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mbeunkui F, Johann DJ (2009) Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63(4):571–582

    Article  PubMed  PubMed Central  Google Scholar 

  2. Witz IP, Levy-Nissenbaum O (2006) The tumor microenvironment in the post-PAGET era. Cancer Lett 242(1):1–10

    Article  PubMed  CAS  Google Scholar 

  3. Ingber DE (2008) Can cancer be reversed by engineering the tumor microenvironment? Semin Cancer Biol 18(5):356–364

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genom Hum Genet 2:343–372

    Article  CAS  Google Scholar 

  5. Ingber DE, Tensegrity II (2003) How structural networks influence cellular information processing networks. J Cell Sci 116:1397–1408

    Article  PubMed  CAS  Google Scholar 

  6. Huang S, Eichler G, Bar-Yam Y, Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 94:128701

    Article  PubMed  Google Scholar 

  7. Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1:E131–E138

    Article  PubMed  CAS  Google Scholar 

  8. Ingber DE (2002) Cancer as a disease of epithelial–mesenchymal interactions and extracellular matrix regulation. Differentiation 70:547–560

    Article  PubMed  Google Scholar 

  9. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  10. Nawshad A, LaGamba D, Hay ED (2005) Microarray analysis of gene expression during epithelial–mesenchymal transformation. Dev Dyn 234:132–142

    Article  PubMed  Google Scholar 

  11. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  PubMed  CAS  Google Scholar 

  12. Wanebo HJ, LeGolvan M, Paty PB, Saha S, Zuber M, D’Angelica MI, Kemeny NE (2012) Meeting the biologic challenge of colorectal metastases. Clin Exp Metastasis 29(7):821–839

    Article  PubMed  CAS  Google Scholar 

  13. Rasanen K, Vaheri A (2010) Activation of fibroblasts in cancer stroma. Exp Cell Res 316(17):2713–2722

    Article  PubMed  Google Scholar 

  14. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  PubMed  CAS  Google Scholar 

  15. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  PubMed  CAS  Google Scholar 

  16. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  PubMed  CAS  Google Scholar 

  17. Weber CE, Kuo PC (2012) The tumor microenvironment. Surg Oncol 21(3):172–177

    Article  PubMed  Google Scholar 

  18. Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW (2010) Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol 184:702–712

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R, Rosol TJ, Fernandez S, Huang K, Leone G et al (2010) An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res 70:1323–1333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125(Pt 23):5591–5596

    Article  PubMed  CAS  Google Scholar 

  21. Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104:2224–2234

    Article  PubMed  CAS  Google Scholar 

  22. Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, Lewis CE (2002) Expression of HIF-1alpha by human macrophages: implications for the use of macrophages in hypoxiaregulated cancer gene therapy. J Pathol 196:204–212

    Article  PubMed  CAS  Google Scholar 

  23. White JR, Harris RA, Lee SR, Craigon MH, Binley K, Price T, Beard GL, Mundy CR, Naylor S (2004) Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics 83:1–8

    Article  PubMed  CAS  Google Scholar 

  24. Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW (2010) Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol 184:702–712

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zabuawala T, Taffany DA, Sharma SM, Merchant A, Adair B, Srinivasan R, Rosol TJ, Fernandez S, Huang K, Leone G et al (2010) An ets2-driven transcriptional program in tumor-associated macrophages promotes tumor metastasis. Cancer Res 70:1323–1333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896

    Article  PubMed  CAS  Google Scholar 

  27. Mantovani A (2011) B cells and macrophages in cancer: yin and yang. Nat Med 17:285–286

    Article  PubMed  CAS  Google Scholar 

  28. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA, Guermonprez P, Idoyaga J, Cheong C, Yao KH, Niec RE et al (2012) Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 209:1153–1165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Qin JZ, Upadhyay V, Prabhakar B, Maker AV (2013) Shedding LIGHT (TNFSF14) on the tumor microenvironment of colorectal cancer liver metastases. J Transl Med 11:70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA, Guermonprez P, Idoyaga J, Cheong C, Yao KH, Niec RE et al (2012) Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 209:1153–1165

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Satpathy AT, Kc W, Albring JC, Edelson BT, Kretzer NM, Bhattacharya D, Murphy TL, Murphy KM (2012) Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med 209:1135–1152

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Penna C, Nordlinger B (2002) Surgery of liver metastases from colorectal cancer: new promises. Br Med Bull 64:127–140

    Article  PubMed  Google Scholar 

  34. Gout S, Huot J (2008) Role of cancer microenvironment in metastasis: focus on colon cancer. Cancer Microenviron 1(1):69–83

    Article  PubMed  PubMed Central  Google Scholar 

  35. Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Høyer-Hansen G, Eefsen RL, Reynolds AR, Brodt P (2013) The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Cancer Res 73(7):2031–2043

    Article  PubMed  Google Scholar 

  36. Leupold JH, Asangani I, Maurer GD et al (2007) Src induces urokinase receptor gene expression and invasion/intravasation via activator protein-1/p-c-Jun in colorectal cancer. Mol Cancer Res 5:485–496

    Article  PubMed  CAS  Google Scholar 

  37. Karkkainen MJ, Makinen T, Alitalo K (2002) Lymphatic endothelium: a new frontier of metastasis research. Nat Cell Biol 4:E2–E5

    Article  PubMed  CAS  Google Scholar 

  38. Meijer J, Zeelenberg IS, Sipos B et al (2006) The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver. Cancer Res 66:9576–9582

    Article  PubMed  CAS  Google Scholar 

  39. Weiss L (1989) Biomechanical destruction of cancer cells in skeletal muscle: a rate-regulator for hematogenous metastasis. Clin Exp Metastasis 7:483–491

    Article  PubMed  CAS  Google Scholar 

  40. Wang HH, McIntosh AR, Hasinoff BB et al (2000) B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxicity: a natural hepatic defense against metastasis. Cancer Res 60:5862–5869

    PubMed  CAS  Google Scholar 

  41. Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Walzog B, Gaehtgens P (2000) Adhesion molecules: the path to a new understanding of acute inflammation. News Physiol Sci 15:107–113

    PubMed  CAS  Google Scholar 

  43. Narita T, Kawakami-Kimura N, Kasai Y et al (1996) Induction of E-selectin expression on vascular endothelium by digestive system cancer cells. J Gastroenterol 31:299–301

    Article  PubMed  CAS  Google Scholar 

  44. Auguste P, Fallavollita L, Wang N et al (2007) The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol 170:1781–1792

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kannagi R, Izawa M, Koike T et al (2004) Carbohydratemediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci 95:377–384

    Article  PubMed  CAS  Google Scholar 

  46. Subramaniam V, Gardner H, Jothy S (2007) Soluble CD44 secretion contributes to the acquisition of aggressive tumor phenotype in human colon cancer cells. Exp Mol Pathol 83:341–346

    Article  PubMed  CAS  Google Scholar 

  47. Radinsky R, Ellis LM (1996) Molecular determinants in the biology of liver metastasis. Surg Oncol Clin N Am 5:215–229

    PubMed  CAS  Google Scholar 

  48. Mueller L, Goumas FA, Himpel S et al (2007) Imatinib mesylate inhibits proliferation and modulates cytokine expression of human cancer-associated stromal fibroblasts from colorectal metastases. Cancer Lett 250:329–338

    Article  PubMed  CAS  Google Scholar 

  49. Edin S, Wikberg ML, Dahlin AM, Rutegård J, Öberg Å, Oldenborg PA, Palmqvist R (2012) The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One 7(10):e47045

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25:315–322

    Article  PubMed  Google Scholar 

  51. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073

    Article  PubMed  CAS  Google Scholar 

  52. Siveen KS, Kuttan G (2009) Role of macrophages in tumour progression. Immunol Lett 123:97–102

    Article  PubMed  CAS  Google Scholar 

  53. Adachi Y, Inomata M, Kakisako K et al (1999) Histopathologic characteristics of colorectal cancer with liver metastasis. Dis Colon Rectum 42:1053–1056

    Article  PubMed  CAS  Google Scholar 

  54. Talbot IC, Ritchie S, Leighton MH et al (1980) The clinical significance of invasion of veins by rectal cancer. Br J Surg 67:439–442

    Article  PubMed  CAS  Google Scholar 

  55. Wong SK, Jalaludin BB, Henderson CJ et al (2008) Direct tumor invasion in colon cancer: correlation with tumor spread and survival. Dis Colon Rectum 51:1331–1338

    Article  PubMed  Google Scholar 

  56. Cui YL, Li HK, Zhou HY, Zhang T, Li Q (2013) Correlations of tumor-associated macrophage subtypes with liver metastases of colorectal cancer. Asian Pac J Cancer Prev 14(2):1003–1007

    Article  PubMed  Google Scholar 

  57. Jedinak A, Dudhgaonkar S, Sliva D (2010) Activated macrophages induce metastatic behavior of colon cancer cells. Immunobiology 215:242–249

    Article  PubMed  CAS  Google Scholar 

  58. Ma J, Liu L, Che G et al (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schiavoni G, Gabriele L, Mattei F (2013) The tumor microenvironment: a pitch for multiple players. Front Oncol 3:90

    Article  PubMed  PubMed Central  Google Scholar 

  60. Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A et al (2011) A human promyelocytic-like population is responsible for the immunosuppression mediated by myeloid-derived suppressor cells. Blood 118:2254–2265

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J et al (2013) STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J. Clin. Invest 123(4):1580–1589

    Article  CAS  Google Scholar 

  63. Hix LM, Karavitis J, Khan MW, Shi YH, Khazaie K, Zhang M (2013) Tumor STAT1 transcription factor activity enhances breast tumor growth and immunosuppression mediated by myeloid-derived suppressor cells. J BiolChem 288(17):11676–11688

    CAS  Google Scholar 

  64. Guo Q, Lv Z, Fu Q, Jiang C, Liu Y, Lai L et al (2012) IFN- gamma producing T cells contribute to the increase of myeloid derived suppressor cells in tumor-bearing mice after cyclophosphamide treatment. Int Immunopharmacol 12:425–432

    Article  PubMed  CAS  Google Scholar 

  65. Kusmartsev S, Nagaraj S, Gabrilovich DI (2005) Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175:4583–4592

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI (2004) Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 172:989–999

    Article  PubMed  CAS  Google Scholar 

  67. Bronte V, Serafini P, Mazzoni A, Segal DM, Zanovello P (2003) L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol 24:301–305

    Article  Google Scholar 

  68. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr- 1 + CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    Article  PubMed  CAS  Google Scholar 

  69. Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983

    Article  PubMed  CAS  Google Scholar 

  70. Simpson KD, Templeton DJ, Cross JV (2012) Macrophage migration inhibitory factor promotes tumor growth and metastasis by inducing myeloid-derived suppressor cells in the tumor microenvironment. J Immunol 189:5533–5540

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. Kmieciak M, Basu D, Payne KK, Toor A, Yacoub A, Wang XY et al (2011) Activated NKT cells and Nk cells render T cells resistant to myeloid-derived suppressor cells and result in an effective adoptive cellular therapy against breast cancer in the FVBN202 transgenic mouse. J Immunol 187:708–717

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Kerkar SP, Restifo NP (2012) Cellular constituents of immune escape within the tumor microenvironment. Cancer Res 72:3125–3130

    Article  PubMed  CAS  Google Scholar 

  73. Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P (2011) MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenictherapy. Int Immunopharmacol 11:856–861

    Article  PubMed  CAS  Google Scholar 

  74. Kitamura T, Fujishita T, Loetscher P, Revesz L, Hashida H, Kizaka-Kondoh S et al (2010) Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model. Proc Natl Acad Sci U S A 107:13063–13068

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Lim SY, Gordon-Weeks AN, Zhao L, Tapmeier TT, Im JH, Cao Y, Beech J, Allen D, Smart S, Muschel RJ (2013) Recruitment of myeloid cells to the tumor microenvironment supports liver metastasis. Oncoimmunology 2(3):e23187

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M et al (2008) Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Zhang W, Pal SK, Liu X, Yang C, Allahabadi S, Bhanji S, Figlin RA, Yu H, Reckamp KL (2013) Myeloid clusters are associated with a pro-metastatic environment and poor prognosis in smoking-related early stage non-small cell lung cancer. PLoS One 8(5):e65121

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Yoshidome H, Kohno H, Shida T, Kimura F, Shimizu H, Ohtsuka M et al (2009) Significance of monocyte chemoattractant protein-1 in angiogenesis and survival in colorectal liver metastases. Int J Oncol 34:923–930

    Article  PubMed  CAS  Google Scholar 

  80. Zhang B, Wang Z, Wu L, Zhang M, Li W, Ding J, Zhu J, Wei H, Zhao K (2013) Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS One 8(2):e57114

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Teijeira A, Rouzaut A, Melero I (2013) Initial Afferent Lymphatic Vessels Controlling Outbound Leukocyte Traffic from Skin to Lymph Nodes. Front Immunol 4:433

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sakai N, Yoshidome H, Shida T, Kimura F, Shimizu H, Ohtsuka M, Takeuchi D, Sakakibara M, Miyazaki M (2012) CXCR4/CXCL12 expression profile is associated with tumor microenvironment and clinical outcome of liver metastases of colorectal cancer. Clin Exp Metastasis 29(2):101–110

    Article  PubMed  CAS  Google Scholar 

  83. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107:1761–1767

    Article  PubMed  CAS  Google Scholar 

  84. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Kim J, Takeuchi H, Lam ST et al (2005) Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 23:2744–2753

    Article  PubMed  CAS  Google Scholar 

  86. Miki J, Furusato B, Li H et al (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67:3153–3161

    Article  PubMed  CAS  Google Scholar 

  87. Lin EH, Hassan M, Li Y et al (2007) Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 110:534–542

    Article  PubMed  CAS  Google Scholar 

  88. Nordlinger B, Van Cutsem E, Gruenberger T, Glimelius B, Poston G, Rougier P, Sobrero A, Ychou M (2009) Combination of surgery and chemotherapy and the role of targeted agents in the treatment of patients with colorectal liver metastases: recommendations from an expert panel. Ann Oncol 20:985–992

    Article  PubMed  CAS  Google Scholar 

  89. Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K, Nagura H, Ohtani H (1998) CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–3494

    PubMed  CAS  Google Scholar 

  90. Katz SC, Bamboat ZM, Maker AV, Shia J, Pillarisetty VG, Yopp AC, Hedvat CV, Gonen M, Jarnagin WR, Fong Y et al (2012) Regulatory T Cell infiltration predicts outcome following resection of colorectal cancer liver metastases. Ann Surg Oncol 20:946–955

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pages F, Galon J, Dieu-Nosjean MC, Tartour E, Sautes-Fridman C, Fridman WH (2009) Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:1093–1102

    Article  PubMed  Google Scholar 

  92. Maker AV, Ito H, Mo Q, Qin L, DeMatteo RP, Blumgart LH, Fong Y, Maithel SK, Jarnagin WR, D’Angelica MI (2010) Use of T-cell proliferation to predict survival and recurrence in patients with resected colorectal liver metastases. ASCO Meeting Abstr 28:10571

    Google Scholar 

  93. Wagner P, Koch M, Nummer D, Palm S, Galindo L, Autenrieth D, Rahbari N, Schmitz-Winnenthal FH, Schirrmacher V, Buchler MW et al (2008) Detection and functional analysis of tumor infiltrating T-lymphocytes (TIL) in liver metastases from colorectal cancer. Ann Surg Oncol 15:2310–2317

    Article  PubMed  Google Scholar 

  94. Qin JZ, Upadhyay V, Prabhakar B, Maker AV (2013) Shedding LIGHT (TNFSF14) on the tumor microenvironment of colorectal cancer liver metastases. J Transl Med 11:70

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Almeida AR et al (2010) CD4(+)CD25(+) Treg regulate the contribution of CD8(+) T-cell subsets in repopulation of the lymphopenic environment. Eur J Immunol 40:3478–3488

    Article  PubMed  CAS  Google Scholar 

  96. Zanin-Zhorov A, Ding Y, Kumari S et al (2010) Protein kinase C-theta mediates negative feedback on regulatory T cell function. Science 328:372–376

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Bierie B, Moses HL (2010) Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev 21:49–59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  PubMed  CAS  Google Scholar 

  99. Yang L, Pang Y, Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31:220–227

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Huang X, Zou Y, Lian L, Wu X, He X, He X, Wu X, Huang Y, Lan P (2013) Changes of T cells and cytokines TGF-β1 and IL-10 in mice during liver metastasis of colon carcinoma: implications for liver anti-tumor immunity. J Gastrointest Surg 17(7):1283–1291

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Giakoustidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giakoustidis, A., Mudan, S. & Hagemann, T. Tumour Microenvironment: Overview with an Emphasis on the Colorectal Liver Metastasis Pathway. Cancer Microenvironment 8, 177–186 (2015). https://doi.org/10.1007/s12307-014-0155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-014-0155-5

Keywords

Navigation