Skip to main content

Advertisement

Log in

Role of p63 in Development, Tumorigenesis and Cancer Progression

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

The p53-related protein p63 has pleiotropic functions, including cell proliferation, survival, apoptosis, differentiation, senescence, and aging. The p63 gene is expressed as multiple isoforms that either contain an N-terminal p53-homologous transactivation domain (TAp63) or that lack this domain (ΔNp63). Multiple studies have demonstrated that p63 plays a crucial role in stratified epithelial development, and have shown the importance of p63 for maintaining proliferation potential, inducing differentiation, and preventing senescence. Additionally, much research focuses on the role of p63 in cancer progression. Clinical evidence suggests that p63 may play a role in inhibiting metastasis. Similarly, genetic mice models together with cell culture data strongly indicate that p63 deficiency may be a causative factor for metastatic spread. Moreover, the role of p63 in cancer metastasis has been shown to be greatly related to the ability of mutant p53 to promote cancer malignancy. However, there is still much confusion as to what the role of each specific isoform is. In this review, we highlight some of the major findings in the current literature regarding the role of specific p63 isoforms in development, tumorigenesis, and particularly in cancer metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9(10):749–758

    Article  PubMed  CAS  Google Scholar 

  2. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137(3):413–431

    Article  PubMed  CAS  Google Scholar 

  3. Yang A et al (1998) p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2(3):305–316

    Article  PubMed  CAS  Google Scholar 

  4. Kaghad M et al (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90(4):809–819

    Article  PubMed  CAS  Google Scholar 

  5. Melino G (2011) p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ

  6. Vanbokhoven H et al (2011) p63, a story of mice and men. J Invest Dermatol

  7. Yang A et al (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398(6729):714–718

    Article  PubMed  CAS  Google Scholar 

  8. May P, May E (1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18(53):7621–7636

    Article  PubMed  CAS  Google Scholar 

  9. Khoury MP, Bourdon J-C (2011) p53 isoforms: an intracellular microprocessor? Genes Cancer 2(4):453–465

    Article  PubMed  CAS  Google Scholar 

  10. Marcel V, Hainaut P (2009) p53 isoforms - a conspiracy to kidnap p53 tumor suppressor activity? Cell Mol Life Sci 66(3):391–406

    Article  PubMed  CAS  Google Scholar 

  11. Yang A et al (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404(6773):99–103

    Article  PubMed  CAS  Google Scholar 

  12. Weber A et al (2002) Expression of p53 and its homologues in primary and recurrent squamous cell carcinomas of the head and neck. Int J Cancer 99(1):22–28

    Article  PubMed  CAS  Google Scholar 

  13. Zawacka-Pankau J et al (2010) p73 tumor suppressor protein: a close relative of p53 not only in structure but also in anti-cancer approach? Cell Cycle 9(4)

  14. Tomasini R et al (2008) TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 22(19):2677–2691

    Article  PubMed  CAS  Google Scholar 

  15. Deyoung MP, Ellisen LW (2007) p63 and p73 in human cancer: defining the network. Oncogene 26(36):5169–5183

    Article  PubMed  CAS  Google Scholar 

  16. Mills AA et al (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398(6729):708–713

    Article  PubMed  CAS  Google Scholar 

  17. Westfall MD et al (2003) The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol 23(7):2264–2276

    Article  PubMed  CAS  Google Scholar 

  18. Dohn M, Zhang S, Chen X (2001) p63alpha and DeltaNp63alpha can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20(25):3193–3205

    Article  PubMed  CAS  Google Scholar 

  19. Ghioni P et al (2002) Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol Cell Biol 22(24):8659–8668

    Article  PubMed  CAS  Google Scholar 

  20. Helton ES, Zhu J, Chen X (2006) The unique NH2-terminally deleted (DeltaN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the DeltaN variant of p63. J Biol Chem 281(5):2533–2542

    Article  PubMed  CAS  Google Scholar 

  21. Mangiulli M et al (2009) Identification and functional characterization of two new transcriptional variants of the human p63 gene. Nucleic Acids Res 37(18):6092–6104

    Article  PubMed  CAS  Google Scholar 

  22. Thanos CD, Bowie JU (1999) p53 Family members p63 and p73 are SAM domain-containing proteins. Protein Sci 8(8):1708–1710

    Article  PubMed  CAS  Google Scholar 

  23. Serber Z et al (2002) A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Mol Cell Biol 22(24):8601–8611

    Article  PubMed  CAS  Google Scholar 

  24. Coutandin D et al (2009) Conformational stability and activity of p73 require a second helix in the tetramerization domain. Cell Death Differ 16(12):1582–1589

    Article  PubMed  CAS  Google Scholar 

  25. Joerger A et al (2009) Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Proc Natl Acad Sci USA

  26. Gaiddon C et al (2001) A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21(5):1874–1887

    Article  PubMed  CAS  Google Scholar 

  27. Rocco JW et al (2006) p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9(1):45–56

    Article  PubMed  CAS  Google Scholar 

  28. Davison TS et al (1999) p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J Biol Chem 274(26):18709–18714

    Article  PubMed  CAS  Google Scholar 

  29. Ying H et al (2005) DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol Cell Biol 25(14):6154–6164

    Article  PubMed  CAS  Google Scholar 

  30. Barbareschi M et al (2001) p63, a p53 homologue, is a selective nuclear marker of myoepithelial cells of the human breast. Am J Surg Pathol 25(8):1054–1060

    Article  PubMed  CAS  Google Scholar 

  31. Signoretti S et al (2000) p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 157(6):1769–1775

    Article  PubMed  CAS  Google Scholar 

  32. Candi E et al (2007) DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci USA 104(29):11999–12004

    Article  PubMed  CAS  Google Scholar 

  33. Laurikkala J et al (2006) p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 133(8):1553–1563

    Article  PubMed  CAS  Google Scholar 

  34. Gonfloni S et al (2009) Inhibition of the c-Abl-TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nat Med 15(10):1179–1185

    Article  PubMed  CAS  Google Scholar 

  35. Suh E-K et al (2006) p63 protects the female germ line during meiotic arrest. Nature 444(7119):624–628

    Article  PubMed  CAS  Google Scholar 

  36. Barbieri CE et al (2006) Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res 66(15):7589–7597

    Article  PubMed  CAS  Google Scholar 

  37. Carroll DK et al (2006) p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol 8(6):551–561

    Article  PubMed  CAS  Google Scholar 

  38. Romano R-A et al (2009) An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One 4(5):e5623

    Article  PubMed  Google Scholar 

  39. Ferretti E et al (2011) A conserved Pbx-Wnt-p63-Irf6 regulatory module controls face morphogenesis by promoting epithelial apoptosis. Dev Cell 21(4):627–641

    Article  PubMed  CAS  Google Scholar 

  40. Aberdam D et al (2007) Key role of p63 in BMP-4-induced epidermal commitment of embryonic stem cells. Cell Cycle 6(3):291–294

    Article  PubMed  CAS  Google Scholar 

  41. Mikkola ML (2007) p63 in skin appendage development. Cell Cycle 6(3):285–290

    Article  PubMed  CAS  Google Scholar 

  42. Herfs M et al (2010) Regulation of p63 isoforms by snail and slug transcription factors in human squamous cell carcinoma. Am J Pathol

  43. Higashikawa K et al (2007) Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma. Cancer Res 67(19):9207–9213

    Article  PubMed  CAS  Google Scholar 

  44. Petitjean A et al (2005) The expression of TA and DeltaNp63 are regulated by different mechanisms in liver cells. Oncogene 24(3):512–519

    Article  PubMed  CAS  Google Scholar 

  45. Yao J-Y, Pao C-C, Chen J-K (2010) Transcriptional activity of TAp63 promoter is regulated by c-jun. J Cell Physiol 225(3):898–904

    Article  PubMed  CAS  Google Scholar 

  46. Wu J et al (2010) TAp63 is a transcriptional target of NF-kappaB. J Cell Biochem 109(4):702–710

    PubMed  CAS  Google Scholar 

  47. Lena A. et al (2008) miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ

  48. Yi R et al (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452(7184):225–229

    Article  PubMed  CAS  Google Scholar 

  49. Manni I et al (2009) The microRNA miR-92 increases proliferation of myeloid cells and by targeting p63 modulates the abundance of its isoforms. FASEB J

  50. Papagiannakopoulos T, Shapiro A, Kosik KS (2008) MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 68(19):8164–8172

    Article  PubMed  CAS  Google Scholar 

  51. Liefer KM et al (2000) Down-regulation of p63 is required for epidermal UV-B-induced apoptosis. Cancer Res 60(15):4016–4020

    PubMed  CAS  Google Scholar 

  52. Westfall MD et al (2005) Ultraviolet radiation induces phosphorylation and ubiquitin-mediated degradation of DeltaNp63alpha. Cell Cycle 4(5):710–716

    Article  PubMed  CAS  Google Scholar 

  53. Papoutsaki M et al (2005) A p38-dependent pathway regulates DeltaNp63 DNA binding to p53-dependent promoters in UV-induced apoptosis of keratinocytes. Oncogene 24(46):6970–6975

    Article  PubMed  CAS  Google Scholar 

  54. Chatterjee A et al (2010) Regulation of p53 Family Member Isoform Delta}Np63{alpha by the Nuclear Factor-{kappa}B Targeting Kinase I{kappa}B Kinase {beta}. Cancer Res 70(4):1419–1429

    Article  PubMed  CAS  Google Scholar 

  55. Fomenkov A et al (2004) RACK1 and stratifin target DeltaNp63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle 3(10):1285–1295

    Article  PubMed  CAS  Google Scholar 

  56. Lazzari C et al (2011) HIPK2 phosphorylates ΔNp63α and promotes its degradation in response to DNA damage. Oncogene 30(48):4802–4813

    Article  PubMed  CAS  Google Scholar 

  57. Rossi M et al (2006) The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci USA 103(34):12753–12758

    Article  PubMed  CAS  Google Scholar 

  58. Rossi M et al (2006) Itch/AIP4 associates with and promotes p63 protein degradation. Cell Cycle 5(16):1816–1822

    Article  PubMed  CAS  Google Scholar 

  59. Deutsch GB et al (2011) DNA damage in oocytes induces a switch of the quality control factor TAp63α from dimer to tetramer. Cell 144(4):566–576

    Article  PubMed  CAS  Google Scholar 

  60. Celli J et al (1999) Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell 99(2):143–153

    Article  PubMed  CAS  Google Scholar 

  61. McGrath JA et al (2001) Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum Mol Genet 10(3):221–229

    Article  PubMed  CAS  Google Scholar 

  62. Brunner HG, Hamel BCJ, van Bokhoven H (2002) P63 gene mutations and human developmental syndromes. Am J Med Genet 112(3):284–290

    Article  PubMed  Google Scholar 

  63. van Bokhoven H, McKeon F (2002) Mutations in the p53 homolog p63: allele-specific developmental syndromes in humans. Trends Mol Med 8(3):133–139

    Article  PubMed  Google Scholar 

  64. Rinne T et al (2006) Delineation of the ADULT syndrome phenotype due to arginine 298 mutations of the p63 gene. Eur J Hum Genet 14(8):904–910

    Article  PubMed  CAS  Google Scholar 

  65. Senoo M et al (2007) p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129(3):523–536

    Article  PubMed  CAS  Google Scholar 

  66. Shalom-Feuerstein R et al (2010) ΔNp63 is an ectodermal gatekeeper of epidermal morphogenesis. Cell Death Differ

  67. Candi E et al (2006) Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ 13(6):1037–1047

    Article  PubMed  CAS  Google Scholar 

  68. Nguyen B-C et al (2006) Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev 20(8):1028–1042

    Article  PubMed  CAS  Google Scholar 

  69. Wu G et al. ΔNp63α and tap63α regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res

  70. Su X et al (2009) TAp63 prevents premature aging by promoting adult stem cell maintenance. Cell Stem Cell 5(1):64–75

    Article  PubMed  CAS  Google Scholar 

  71. Katoh I et al (2000) p51A (TAp63gamma), a p53 homolog, accumulates in response to DNA damage for cell regulation. Oncogene 19(27):3126–3130

    Article  PubMed  CAS  Google Scholar 

  72. DeYoung MP et al (2006) Tumor-specific p73 up-regulation mediates p63 dependence in squamous cell carcinoma. Cancer Res 66(19):9362–9368

    Article  PubMed  CAS  Google Scholar 

  73. Truong AB et al (2006) p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 20(22):3185–3197

    Article  PubMed  CAS  Google Scholar 

  74. Antonini D et al (2010) Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells. J Invest Dermatol 130(5):1249–1257

    Article  PubMed  CAS  Google Scholar 

  75. Keyes WM et al (2005) p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 19(17):1986–1999

    Article  PubMed  CAS  Google Scholar 

  76. Guo X et al (2009) TAp63 induces senescence and suppresses tumorigenesis in vivo. Nat Cell Biol 11(12):1451–1457

    Article  PubMed  CAS  Google Scholar 

  77. Flores ER et al (2005) Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7(4):363–373

    Article  PubMed  CAS  Google Scholar 

  78. Keyes WM et al (2006) p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc Natl Acad Sci USA 103(22):8435–8440

    Article  PubMed  CAS  Google Scholar 

  79. Hagiwara K et al (1999) Mutational analysis of the p63/p73L/p51/p40/CUSP/KET gene in human cancer cell lines using intronic primers. Cancer Res 59(17):4165–4169

    PubMed  CAS  Google Scholar 

  80. Sunahara M et al (1999) Mutational analysis of p51A/TAp63gamma, a p53 homolog, in non-small cell lung cancer and breast cancer. Oncogene 18(25):3761–3765

    Article  PubMed  CAS  Google Scholar 

  81. Björkqvist AM et al (1998) DNA gains in 3q occur frequently in squamous cell carcinoma of the lung, but not in adenocarcinoma. Genes Chromosomes Canc 22(1):79–82

    Article  Google Scholar 

  82. Hibi K et al (2000) AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 97(10):5462–5467

    Article  PubMed  CAS  Google Scholar 

  83. Massion PP et al (2003) Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 63(21):7113–7121

    PubMed  CAS  Google Scholar 

  84. Sniezek JC et al (2004) Dominant negative p63 isoform expression in head and neck squamous cell carcinoma. Laryngoscope 114(12):2063–2072

    Article  PubMed  CAS  Google Scholar 

  85. Hu H et al (2002) Elevated expression of p63 protein in human esophageal squamous cell carcinomas. Int J Cancer 102(6):580–583

    Article  PubMed  CAS  Google Scholar 

  86. Wang TY et al (2001) Histologic and immunophenotypic classification of cervical carcinomas by expression of the p53 homologue p63: a study of 250 cases. Hum Pathol 32(5):479–486

    Article  PubMed  CAS  Google Scholar 

  87. Matos I et al (2005) p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas. Virchows Arch 447(4):688–694

    Article  PubMed  CAS  Google Scholar 

  88. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  PubMed  CAS  Google Scholar 

  89. Leong C-O et al (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117(5):1370–1380

    Article  PubMed  CAS  Google Scholar 

  90. Ramsey MR et al (2011) Physical Association of HDAC1 and HDAC2 with p63 mediates transcriptional repression and tumor maintenance in squamous cell carcinoma. Cancer Res 71(13):4373–4379

    Article  PubMed  CAS  Google Scholar 

  91. Wu G et al (2005) DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res 65(3):758–766

    PubMed  CAS  Google Scholar 

  92. Keyes WM et al (2011) ΔNp63α is an oncogene that targets chromatin remodeler Lsh to drive skin stem cell proliferation and tumorigenesis. Cell Stem Cell 8(2):164–176

    Article  PubMed  CAS  Google Scholar 

  93. Pruneri G et al (2005) The transactivating isoforms of p63 are overexpressed in high-grade follicular lymphomas independent of the occurrence of p63 gene amplification. J Pathol 206(3):337–345

    Article  PubMed  CAS  Google Scholar 

  94. Quade BJ et al (2001) Expression of the p53 homologue p63 in early cervical neoplasia. Gynecol Oncol 80(1):24–29

    Article  PubMed  CAS  Google Scholar 

  95. Stefanou D et al (2004) p63 expression in benign and malignant breast lesions. Histol Histopathol 19(2):465–471

    PubMed  CAS  Google Scholar 

  96. Wang X et al (2002) p63 expression in normal, hyperplastic and malignant breast tissues. Breast Cancer 9(3):216–219

    Article  PubMed  Google Scholar 

  97. Koga F et al (2003) Impaired p63 expression associates with poor prognosis and uroplakin III expression in invasive urothelial carcinoma of the bladder. Clin Cancer Res 9(15):5501–5507

    PubMed  CAS  Google Scholar 

  98. Koga F et al (2003) Impaired Delta Np63 expression associates with reduced beta-catenin and aggressive phenotypes of urothelial neoplasms. Br J Cancer 88(5):740–747

    Article  PubMed  CAS  Google Scholar 

  99. Urist MJ et al (2002) Loss of p63 expression is associated with tumor progression in bladder cancer. Am J Pathol 161(4):1199–1206

    Article  PubMed  CAS  Google Scholar 

  100. Vanaja DK et al (2003) Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res 63(14):3877–3882

    PubMed  CAS  Google Scholar 

  101. Haqq C et al (2005) The gene expression signatures of melanoma progression. Proc Natl Acad Sci USA 102(17):6092–6097

    Article  PubMed  CAS  Google Scholar 

  102. Su H et al (2003) Gene expression analysis of esophageal squamous cell carcinoma reveals consistent molecular profiles related to a family history of upper gastrointestinal cancer. Cancer Res 63(14):3872–3876

    PubMed  CAS  Google Scholar 

  103. Su X et al (2010) TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467(7318):986–990

    Article  PubMed  CAS  Google Scholar 

  104. Muller PAJ et al (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139(7):1327–1341

    Article  PubMed  Google Scholar 

  105. Adorno M et al (2009) A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137(1):87–98

    Article  PubMed  CAS  Google Scholar 

  106. Fukushima H et al (2009) Loss of DeltaNp63alpha promotes invasion of urothelial carcinomas via N-cadherin/Src homology and collagen/extracellular signal-regulated kinase pathway. Cancer Res 69(24):9263–9270

    Article  PubMed  CAS  Google Scholar 

  107. Higashikawa K et al (2009) DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. Int J Cancer 124(12):2837–2844

    Article  PubMed  CAS  Google Scholar 

  108. Kommagani R et al (2009) Regulation of VDR by {Delta}Np63{alpha} is associated with inhibition of cell invasion. J Cell Sci

  109. Ihrie RA et al (2005) Perp is a p63-regulated gene essential for epithelial integrity. Cell 120(6):843–856

    Article  PubMed  CAS  Google Scholar 

  110. Leonard MK et al (2011) ΔNp63α regulates keratinocyte proliferation by controlling PTEN expression and localization. Cell Death Differ

  111. Girardini JE et al (2011) A Pin1/Mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 20(1):79–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program (973 Program) of China (2012CB910700) and National Science Foundation of China (#31171362) to ZX. X., and United States Department of Defense Congressionally Directed Medical Research Programs grant W81XWH-10-1-0161 to J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Xiong Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergholz, J., Xiao, ZX. Role of p63 in Development, Tumorigenesis and Cancer Progression. Cancer Microenvironment 5, 311–322 (2012). https://doi.org/10.1007/s12307-012-0116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-012-0116-9

Keywords

Navigation