Skip to main content

Advertisement

Log in

Clinical and Biological Implications of the Tumor Microenvironment

  • Original Paper
  • Published:
Cancer Microenvironment

An Erratum to this article was published on 11 July 2012

Abstract

In normal tissues and organs, the activities of the constituent cells are strictly restricted to the tasks assigned to them during development. In addition they (with the exception of leukocytes) remain inflexibly confined to their territorial domains by regulatory interactions with their neighbors. This creates specialized local micro-environments in which structure and function are orderly, stable and tightly controlled by feed-back loops, within interacting regulatory networks. This system has considerable ability to adapt to changing conditions. In contrast, the microenvironment in regions where tumors are forming and expanding is characterized by progressive loss of specialized or differentiated cellular functions, disorderly molecular signals, degeneration of microscopical organ structure. This, coupled with the traffic of cells into and out of the tumor, often culminating in local invasion and metastasis to other organs. The nature of these disturbed molecular and cellular interactions is, by definition, highly unstable and increasingly unpredictable as time passes. It also varies between different tumors, sometimes even leading to regression. However, systematic analysis of this dysfunction in the tumor microcosm, using multiple modern research techniques, has revealed that all actively growing primary and secondary neoplasms share an absolute dependency upon support from adjacent non-neoplastic cells of the host. This support, in turn, continuously depends upon dynamic interplay between tumor and host cell populations, via signaling molecules and surface receptors in the tumor microenvironment. Such interplay determines the fate of the growing neoplasm. Such information, described and evaluated in this article, provides important new insights into the etiology of carcinogenesis and how tumor growth, invasion and metastasis might be therapeutically arrested. The facts and concepts assembled below, regarding the cancer microenvironment, demonstrate how modern molecular findings reveal the impact of the wide range of cancer diseases upon the internal cellular, tissue and organ environments of the whole individual and how this applies to designing new work to improve human cancer diagnosis and treatment. The article discusses several specific types of experimentally-induced and clinically common cancers to derive principles useful for interpreting events in the tumor microenvironment, which apply to cancers in general and especially to human malignant disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Orr J (1938) Changes antecedent to tumour formation during the treatment of mouse skin with carcinogenic hydrocarbons. J Pathol Bacteriol 46:495–515

    Article  Google Scholar 

  2. Tarin D (1972) Morphological studies on the mechanism of carcinogenesis. In: Tarin D (ed) Tissue interactions in carcinogenesis. Academic, London, pp 227–289

    Google Scholar 

  3. Tarin D (1972) Tissue interactions in morphogenesis, morphostasis and carcinogenesis. J Theor Biol 34(1):61–72

    Article  PubMed  CAS  Google Scholar 

  4. Kratochwil K (1972) Tissue interaction during embryonic development. In: Tarin D (ed) Tissue interactions in carcinogenesis. Academic, London, pp 1–47

    Google Scholar 

  5. Tarin D (1967) Sequential electron microscopical study of experimental mouse skin carcinogenesis. Int J Cancer 2(3):195–211

    Article  PubMed  CAS  Google Scholar 

  6. Tarin D (1969) Fine structure of murine mammary tumours: the relationship between epithelium and connective tissue in neoplasms induced by various agents. Br J Cancer 23(2):417–425

    Article  PubMed  CAS  Google Scholar 

  7. Billingham RE, Orr JW, Woodhouse DL (1951) Transplantation of skin components during chemical carcinogenesis with 20-methylcholanthrene. Br J Cancer 5(4):417–432

    Article  PubMed  CAS  Google Scholar 

  8. Orr J, Spencer A (1972) Transplantation studies of the role of the stroma in epidermal carcinogenesis. In: Tarin D (ed) Tissue Interactions in carcinogenesis. Academic, London, pp 291–303

    Google Scholar 

  9. Brand KG, Buoen LC, Johnson KH, Brand I (1975) Etiological factors, stages, and the role of the foreign body in foreign body tumorigenesis: a review. Cancer Res 35(2):279–286

    PubMed  CAS  Google Scholar 

  10. Tarin D (1972) Tissue interactions in carcinogenesis. Academic, London

    Google Scholar 

  11. Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  PubMed  CAS  Google Scholar 

  12. Tarin D (2011) Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Semin Cancer Biol 21(2):72–82

    Google Scholar 

  13. Tarin D (2011) Inappropriate gene expression in human cancer and its far-reaching biological and clinical significance. Cancer Metastasis Rev

  14. Spemann H (1938) Embryonic induction and development. In. Yale University Press, New Haven

  15. Tarin D (1972) Tissue interactions and the maintenance of histological structure in adults. In: Tarin D (ed) Tissue interactions in carcinogenesis. Academic, London, pp 81–93

    Google Scholar 

  16. Warburton D, Wuenschell C, Flores-Delgado G, Anderson K (1998) Commitment and differentiation of lung cell lineages. Biochem Cell Biol 76(6):971–995

    Article  PubMed  CAS  Google Scholar 

  17. Beers MF, Morrisey EE (2011) The three R’s of lung health and disease: repair, remodeling, and regeneration. J Clin Invest 121(6):2065–2073

    Article  PubMed  CAS  Google Scholar 

  18. Saxén L (1972) Interactive mechanisms in morphogenesis. In: Tarin D (ed) Tissue interactions in carcinogenesis. Academic, London, pp 49–80

    Google Scholar 

  19. Nagatomo T, Ohga S, Takada H et al (2004) Microarray analysis of human milk cells: persistent high expression of osteopontin during the lactation period. Clin Exp Immunol 138(1):47–53

    Article  PubMed  CAS  Google Scholar 

  20. Nemir M, Bhattacharyya D, Li X, Singh K, Mukherjee AB, Mukherjee BB (2000) Targeted inhibition of osteopontin expression in the mammary gland causes abnormal morphogenesis and lactation deficiency. J Biol Chem 275(2):969–976

    Article  PubMed  CAS  Google Scholar 

  21. Kyriakides TR, Bornstein P (2003) Matricellular proteins as modulators of wound healing and the foreign body response. Thromb Haemost 90(6):986–992

    PubMed  CAS  Google Scholar 

  22. Ehrchen J, Heuer H, Sigmund R, Schafer MK, Bauer K (2001) Expression and regulation of osteopontin and connective tissue growth factor transcripts in rat anterior pituitary. J Endocrinol 169(1):87–96

    Article  PubMed  CAS  Google Scholar 

  23. Tarin D, Matsumura Y (1993) Deranged activity of the CD44 gene and other loci as biomarkers for progression to metastatic malignancy. J Cell Biochem Suppl 17G:173–185

    Article  PubMed  CAS  Google Scholar 

  24. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370

    Article  PubMed  CAS  Google Scholar 

  25. Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14(5):608–616

    Article  PubMed  CAS  Google Scholar 

  26. Goodison S, Tarin D (1998) Clinical implications of anomalous CD44 gene expression in neoplasia. Front Biosci 3:e89–e109

    PubMed  CAS  Google Scholar 

  27. Suzuki M, Mose E, Galloy C, Tarin D (2007) Osteopontin gene expression determines spontaneous metastatic performance of orthotopic human breast cancer xenografts. Am J Pathol 171(2):682–692

    Article  PubMed  CAS  Google Scholar 

  28. Lim PK, Bliss SA, Patel SA et al (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71(5):1550–1560

    Article  PubMed  CAS  Google Scholar 

  29. Musumeci M, Coppola V, Addario A et al (2011) Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 30(41):4231–4242

    Article  PubMed  CAS  Google Scholar 

  30. Sugino T, Gorham H, Yoshida K et al (1996) Progressive loss of CD44 gene expression in invasive bladder cancer. Am J Pathol 149(3):873–882

    PubMed  CAS  Google Scholar 

  31. Barnhill RL (2006) The Spitzoid lesion: rethinking Spitz tumors, atypical variants, ‘Spitzoid melanoma’ and risk assessment. Mod Pathol 19(Suppl 2):S21–S33

    Article  PubMed  Google Scholar 

  32. Esserman L, Shieh Y, Thompson I (2009) Rethinking screening for breast cancer and prostate cancer. JAMA 302(15):1685–1692

    Article  PubMed  CAS  Google Scholar 

  33. Sanders ME, Schuyler PA, Dupont WD, Page DL (2005) The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer 103(12):2481–2484

    Article  PubMed  Google Scholar 

  34. Nickerson HJ, Matthay KK, Seeger RC et al (2000) Favorable biology and outcome of stage IV-S neuroblastoma with supportive care or minimal therapy: a Children’s Cancer Group study. J Clin Oncol 18(3):477–486

    PubMed  CAS  Google Scholar 

  35. Price JE, Carr D, Jones LD, Messer P, Tarin D (1982) Experimental analysis of factors affecting metastatic spread using naturally occurring tumours. Invasion Metastasis 2(2):77–112

    PubMed  Google Scholar 

  36. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet i:571–573

  37. Tarin D, Price JE, Kettlewell MG, Souter RG, Vass AC, Crossley B (1984) Mechanisms of human tumor metastasis studied in patients with peritoneovenous shunts. Cancer Res 44(8):3584–3592

    PubMed  CAS  Google Scholar 

  38. Tarin D, Price JE (1981) Influence of microenvironment and vascular anatomy on “metastatic” colonization potential of mammary tumors. Cancer Res 41(9 Pt 1):3604–3609

    PubMed  CAS  Google Scholar 

  39. Hart IR, Fidler IJ (1980) Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res 40(7):2281–2287

    PubMed  CAS  Google Scholar 

  40. Suzuki M, Mose ES, Montel V, Tarin D (2006) Dormant cancer cells retrieved from metastasis-free organs regain tumorigenic and metastatic potency. Am J Pathol 169(2):673–681

    Article  PubMed  CAS  Google Scholar 

  41. Goodison S, Kawai K, Hihara J et al (2003) Prolonged dormancy and site-specific growth potential of cancer cells spontaneously disseminated from nonmetastatic breast tumors as revealed by labeling with green fluorescent protein. Clin Cancer Res 9(10 Pt 1):3808–3814

    PubMed  CAS  Google Scholar 

  42. Tarin D (1976) Cellular interactions in neoplasia. In: Weiss L (ed) Fundamental aspects of metastasis. North Holland Publishing Co, Amsterdam, pp 151–187

    Google Scholar 

  43. Yasunaga M, Manabe S, Tarin D, Matsumura Y (2011) Cancer-stroma targeting therapy by cytotoxic immunoconjugate bound to the collagen 4 network in the tumor tissue. Bioconjug Chem 22(9):1776–1783

    PubMed  CAS  Google Scholar 

  44. Horak E, Darling DL, Tarin D (1986) Analysis of organ-specific effects on metastatic tumor formation by studies in vitro. J Natl Cancer Inst 76(5):913–922

    PubMed  CAS  Google Scholar 

  45. Nicolson GL, Dulski KM (1986) Organ specificity of metastatic tumor colonization is related to organ-selective growth properties of malignant cells. Int J Cancer 38(2):289–294

    Article  PubMed  CAS  Google Scholar 

  46. Attwood HD, Park WW (1961) Embolism to the lungs by trophoblast. J Obstet Gynaecol Br Commonw 68:611–617

    Article  PubMed  CAS  Google Scholar 

  47. Carstens PH (1969) Pulmonary bone marrow embolism following external cardiac massage. Acta Pathol Microbiol Scand 76(4):510–514

    Article  PubMed  CAS  Google Scholar 

  48. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  PubMed  CAS  Google Scholar 

  49. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  PubMed  CAS  Google Scholar 

  50. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  51. Ekbom A, Helmick C, Zack M, Adami HO (1990) Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 323(18):1228–1233

    Article  PubMed  CAS  Google Scholar 

  52. Kudo Y, Kamisawa T, Anjiki H, Takuma K, Egawa N (2011) Incidence of and risk factors for developing pancreatic cancer in patients with chronic pancreatitis. Hepatogastroenterology 58(106):609–611

    PubMed  Google Scholar 

  53. Reid BJ, Weinstein WM (1987) Barrett’s esophagus and adenocarcinoma. Annu Rev Med 38:477–492

    Article  PubMed  CAS  Google Scholar 

  54. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217

    Article  PubMed  CAS  Google Scholar 

  55. Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR (2011) Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol

  56. Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67(6):2649–2656

    Article  PubMed  CAS  Google Scholar 

  57. Nash JR, Price JE, Tarin D (1981) Macrophage content and colony-forming potential in mouse mammary carcinomas. Br J Cancer 43(4):478–485

    Article  PubMed  CAS  Google Scholar 

  58. Shree T, Olson OC, Elie BT et al (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev 25(23):2465–2479

    Article  PubMed  CAS  Google Scholar 

  59. Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25(5):235–241

    Article  PubMed  CAS  Google Scholar 

  60. Mahmoud SM, Paish EC, Powe DG et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955

    Article  PubMed  Google Scholar 

  61. Mahmoud SM, Lee AH, Paish EC, Macmillan RD, Ellis IO, Green AR (2011) The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat

  62. Mahmoud SM, Paish EC, Powe DG et al (2011) An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res Treat 127(1):99–108

    Article  PubMed  CAS  Google Scholar 

  63. Talmadge JE (2011) Immune cell infiltration of primary and metastatic lesions: mechanisms and clinical impact. Semin Cancer Biol 21(2):131–138

    Article  PubMed  CAS  Google Scholar 

  64. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2(6):442–454

    Article  PubMed  CAS  Google Scholar 

  65. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    Article  PubMed  CAS  Google Scholar 

  66. Hugo H, Ackland ML, Blick T et al (2007) Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. J Cell Physiol 213(2):374–383

    Article  PubMed  CAS  Google Scholar 

  67. Tarin D, Thompson EW, Newgreen DF (2005) The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res 65(14):5996–6000, discussion -1

    Article  PubMed  CAS  Google Scholar 

  68. Tarin D (2011) Inappropriate gene expression in cancer and its far reaching clinical and biological significance. Canc Metastasis Rev

  69. Domagala W, Wozniak L, Lasota J, Weber K, Osborn M (1990) Vimentin is preferentially expressed in high-grade ductal and medullary, but not in lobular breast carcinomas. Am J Pathol 137(5):1059–1064

    PubMed  CAS  Google Scholar 

  70. Kubiak RS, Szadowska A (1997) Invasive lobular carcinoma of the breast: correlations between morphological features, vimentin expression, oestrogen receptor status and prognosis. Breast 6:89–96

    Article  Google Scholar 

  71. Domagala W, Markiewski M, Kubiak R, Bartkowiak J, Osborn M (1993) Immunohistochemical profile of invasive lobular carcinoma of the breast: predominantly vimentin and p53 protein negative, cathepsin D and oestrogen receptor positive. Virchows Arch A Pathol Anat Histopathol 423(6):497–502

    Article  PubMed  CAS  Google Scholar 

  72. Slack NH, Bross ID (1975) The influence of site of metastasis on tumour growth and response to chemotherapy. Br J Cancer 32(1):78–86

    Article  PubMed  CAS  Google Scholar 

  73. Fidler IJ, Wilmanns C, Staroselsky A, Radinsky R, Dong Z, Fan D (1994) Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev 13(2):209–222

    Article  PubMed  CAS  Google Scholar 

  74. Hahn ME, Gianneschi NC (2011) Enzyme-directed assembly and manipulation of organic nanomaterials. Chem Commun (Camb) 47(43):11814–11821

    Article  CAS  Google Scholar 

  75. US FaDA (2011) FDA Briefing document Oncology Drug [sic] Advisory Committee Meeting. December 5, 2007. BLA STN 125085/91.018. Avastin (bevacizumab). In

  76. Pollack A (2011) F.D.A. Revokes approval of avastin for use as breast cancer drug. New York Times 2011 18th November, Sect. B1

  77. Haines IE, Gabor Miklos G (2011) Time to mandate data release and independent audits for all clinical trials. Med J Aust 195(10):575–577

    Article  PubMed  Google Scholar 

  78. Patocs A, Zhang L, Xu Y et al (2007) Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 357(25):2543–2551

    Article  PubMed  CAS  Google Scholar 

  79. Akino T, Hida K, Hida Y et al (2009) Cytogenetic abnormalities of tumor-associated endothelial cells in human malignant tumors. Am J Pathol 175(6):2657–2667

    Article  PubMed  CAS  Google Scholar 

  80. Sumida T, Kitadai Y, Shinagawa K et al (2011) Anti-stromal therapy with imatinib inhibits growth and metastasis of gastric carcinoma in an orthotopic nude mouse model. Int J Cancer 128(9):2050–2062

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

It is a great pleasure to record sincere thanks to my colleagues GG Miklos PhD and DL Darling MD MRCP for comments, criticisms and suggestions which have been extremely helpful to me in preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Tarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarin, D. Clinical and Biological Implications of the Tumor Microenvironment. Cancer Microenvironment 5, 95–112 (2012). https://doi.org/10.1007/s12307-012-0099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-012-0099-6

Keywords

Navigation