Skip to main content

Tumor Microenvironment Complexity: A Pathological Milieu that Innately Modulates Cancer Progression

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

An elaborate array of heterogeneous populations consisting of neoplastic cells, as well as recruited mesenchymal and inflammatory cells, form the tumor-associated stroma, a pathological milieu collectively known as the tumor microenvironment (TME). Although the traditional approach portrays carcinogenesis as the sum of genetic and epigenetic alterations that tumor cells undergo during the course of the multistep pathological process, over the last two decades, the TME has also been discovered to play an equally important role in determining tumor behavior. Broadly, the paracrine interactions that take place between tumor cells and the TME were found to influence the overall homeostasis, facilitating cancer growth and progression. The neoplastic evolution often benefits from the selective conditions of the TME, among them the presence of cancer-associated fibroblasts (CAFs), abnormal extracellular matrix (ECM) deposition, chronic inflammation, expanded vascularization, and immune response repression. This chapter will point out the main cellular and acellular components of the TME, focusing particular attention on how these tumor-derived factors and the underlying pathophysiological processes mentioned above play a role in innately modulating all aspects of cancer progression, starting with primary tumor growth and reaching the metastatic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbasi MM, Mehdipour M, Monfaredan A et al (2015) Down-regulates erb/b2 oncogene expression and improves outcome of oral carcinoma in a rat model. Asian Pac J Cancer Prev 16:6947–6951

    Article  Google Scholar 

  • Abulaiti A, Shintani Y, Funaki S et al (2013) Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of TGF-𝛽 signaling by IL-6. Lung Cancer 82:204–213

    Article  Google Scholar 

  • Anderson NM, Simon MC (2020) The tumor microenvironment. Curr Biol 30:R921–R925

    Article  CAS  Google Scholar 

  • Baghban R, Roshangar L, Jahanban-Esfahlan R et al (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 18(1):59

    Article  Google Scholar 

  • Balahura LR, Selaru A, Dinescu S et al (2020) Inflammation and inflammasomes – pros and cons in tumorigenesis. J Immunol Res 2020:2549763

    Article  Google Scholar 

  • Balahura LR, Dinescu S, Balas M et al (2021) Cellulose nanofiber-based hydrogels embedding 5-FU promote pyroptosis activation in breast cancer cells and support human adipose-derived stem cell proliferation, opening new perspectives for breast tissue engineering. Pharmaceutics 13:1189

    Article  CAS  Google Scholar 

  • Bald T, Quast T, Landsberg J et al (2014) Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507:109–113

    Article  CAS  Google Scholar 

  • Balkwill F, Coussens LM (2004) Cancer: an inflammatory link. Nature 431:405–406

    Article  CAS  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarised inflammation in the initiation and promotion of malignant disease. Cancer Cell 7:211–217

    Article  CAS  Google Scholar 

  • Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596

    Article  CAS  Google Scholar 

  • Bao B, Thakur A, Li Y et al (2012) The immunological contribution of NF-κB within the tumor microenvironment: a potential protective role of zinc as an anti-tumor agent. Biochim Biophys Acta Rev Cancer 1825:160–172

    Article  CAS  Google Scholar 

  • Beacham DA, Cukierman E (2005) Stromagenesis: the changing face of fibroblastic microenvironments during tumor progression. Semin Cancer Biol 15:329–341

    Article  Google Scholar 

  • Bent R, Moll L, Grabbe S et al (2018) Interleukin-1 beta – a friend or foe in malignancies? Int J Mol Sci 19:2155

    Article  Google Scholar 

  • Billings PC, Pacifici M (2015) Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries. Connect Tissue Res 56:272–280

    Article  CAS  Google Scholar 

  • Binnewies M, Roberts EW, Kersten K et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550

    Article  CAS  Google Scholar 

  • Birbrair A (2018) Pericyte biology: development, homeostasis, and disease. Adv Exp Med Biol 1109:1–3

    Article  CAS  Google Scholar 

  • Boreddy SR, Sahu RP, Srivastava SK (2011) Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-𝛼/VEGF/Rho-GTPases: pivotal role of STAT-3. PLoS One 6(10):e25799

    Article  CAS  Google Scholar 

  • Bos PD, Plitas G, Rudra D et al (2013) Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. J Exp Med 210:2435–2466

    Article  Google Scholar 

  • Botta C, Misso G, Martino E et al (2016) The route to solve the interplay between inflammation, angiogenesis and anti-cancer immune response. Cell Death Dis 7:e2299

    Article  CAS  Google Scholar 

  • Casazza A, Laoui D, Wenes M et al (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores anti-tumor immunity. Cancer Cell 24:695–709

    Article  CAS  Google Scholar 

  • Chang CH, Qiu J, O’Sullivan D et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241

    Article  CAS  Google Scholar 

  • Chavdarov Chonov D, Krasimirova Ignatova MM, Ananiev JR et al (2019) IL-6 activities in the tumour microenvironment. Maced J Med Sci 7:2391–2398

    Article  Google Scholar 

  • Chen Y, Song Y, Du W et al (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26:78

    Article  Google Scholar 

  • Chinai JM, Janakiram M, Chen F et al (2015) New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci 36:587–595

    Article  CAS  Google Scholar 

  • Clambey ET, McNamee EN, Westrich JA et al (2012) Hypoxia-inducible factor-1 alpha-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc Natl Acad Sci U S A 109:E2784–E2793

    Article  CAS  Google Scholar 

  • Coffelt SB, Kersten K, Doornebal C et al (2015) IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522:345–348

    Article  CAS  Google Scholar 

  • Colegio OR, Chu NQ, Szabo A et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513:559–563

    Article  CAS  Google Scholar 

  • Cooke VG, LeBleu VS, Keskin D et al (2012) Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21:66–81

    Article  CAS  Google Scholar 

  • Corzo CA, Condamine T, Lu L et al (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453

    Article  CAS  Google Scholar 

  • Cox TR, Rumney R, Schoof E et al (2015) The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522:106–110

    Article  CAS  Google Scholar 

  • Dang EV, Barbi J, Yang HY et al (2011) Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 146:772–784

    Article  CAS  Google Scholar 

  • David H (1988) Rudolf Virchow and modern aspects of tumor pathology. Pathol Res Pract 183:356–364

    Article  CAS  Google Scholar 

  • De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447

    Article  Google Scholar 

  • Demircioglu F, Wang J, Candid J et al (2020) Cancer associated fibroblast FAK regulates malignant cell metabolism. Nat Commun 11(1):1290

    Article  CAS  Google Scholar 

  • DeNardo DG, Barreto JB, Andreu P et al (2009) CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16:91–102

    Article  CAS  Google Scholar 

  • Dhani N, Fyles A, Hedley D et al (2015) The clinical significance of hypoxia in human cancers. Semin Nucl Med 45:110–121

    Article  Google Scholar 

  • Doedens AL, Stockmann C, Rubinstein MP et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70:7465–7475

    Article  CAS  Google Scholar 

  • Doedens AL, Phan A, Stradner M et al (2013) Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 14:1173–1182

    Article  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  CAS  Google Scholar 

  • DuPage M, Cheung AF, Mazumdar C et al (2011) Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 19:72–85

    Article  CAS  Google Scholar 

  • Eyles J, Puaux AL, Wang X et al (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Investig 120:2030–2039

    Article  CAS  Google Scholar 

  • Facciabene A, Peng X, Hagemann IS et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475:226–230

    Article  CAS  Google Scholar 

  • Filatova A, Seidel S, Bogurcu N et al (2016) Acidosis acts through HSP90 in a PHD/VHL-Independent manner to promote HIF function and stem cell maintenance in glioma. Cancer Res 76:5845–5856

    Article  CAS  Google Scholar 

  • Finisguerra V, Di Conza G, Di Matteo M et al (2015) MET is required for the recruitment of anti-tumoural neutrophils. Nature 522:349–353

    Article  CAS  Google Scholar 

  • Flannagan RS, Cosío G, Grinstein S (2009) Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7(5):355–366

    Article  CAS  Google Scholar 

  • Franklin RA, Liao W, Sarkar A et al (2014) The cellular and molecular origin of tumor-associated macrophages. Science 344:921–925

    Article  CAS  Google Scholar 

  • Fridman WH, Pages F, Sautes-Fridman C et al (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298–306

    Article  CAS  Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  CAS  Google Scholar 

  • Gelfo V, Romaniello D, Mazzeschi M et al (2020) Roles of IL-1 in cancer: from tumor progression to resistance to targeted therapies. Int J Mol Sci 21:6009

    Article  CAS  Google Scholar 

  • Giatromanolaki A, Sivridis E, Koukourakis MI (2007) The pathology of tumor stromatogenesis. Cancer Biol Ther 6:639–645

    Article  CAS  Google Scholar 

  • Gok YB, Gunaydin G, Gedik ME et al (2019) Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci Rep 9:3172

    Article  Google Scholar 

  • Goubran HA, Kotb RR, Stakiw J et al (2014) Regulation of tumor growth and metastasis: the role of tumor microenvironment. Cancer Growth Metastasis 7:9–18

    Article  CAS  Google Scholar 

  • Granot Z, Henke E, Comen EA et al (2011) Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell 20:300–314

    Article  CAS  Google Scholar 

  • Hanna RN, Cekic C, Sag D et al (2015) Patrolling monocytes control tumor metastasis to the lung. Science 350:985–990

    Article  CAS  Google Scholar 

  • Hannani D, Ma Y, Yamazak T et al (2012) Harnessing γδ T cells in anticancer immunotherapy. Trends Immunol 33:199–206

    Article  CAS  Google Scholar 

  • Headley MB, Bins A, Nip A et al (2016) Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 531:513–517

    Article  CAS  Google Scholar 

  • Helfen A, Roth J, Ng T et al (2018) In vivo imaging of pro- and antitumoral cellular components of the tumor microenvironment. J Nucl Med 59:183–188

    Article  CAS  Google Scholar 

  • Imtiyaz HZ, Williams EP, Hickey MM et al (2010) Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 120:2699–2714

    Article  CAS  Google Scholar 

  • Jiang X, Wang J, Deng X et al (2020) The role of microenvironment in tumor angiogenesis. J Exp Clin Cancer Res 39(1):204

    Article  Google Scholar 

  • Jin J, Lin J, Xu A et al (2021) CCL2: an important mediator between tumor cells and host cells in tumor microenvironment. Front Oncol 11:722916

    Article  Google Scholar 

  • Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  CAS  Google Scholar 

  • Kitamura T, Qian BZ, Pollard JW (2015a) Immune cell promotion of metastasis. Nat Rev Immunol 15:73–86

    Article  CAS  Google Scholar 

  • Kitamura T, Qian BZ, Soong D et al (2015b) CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med 212:1043–1059

    Article  CAS  Google Scholar 

  • Koh MY, Lemos R Jr, Liu X et al (2011) The hypoxia-associated factor switches cells from HIF-1alpha- to HIF-2alpha-dependent signaling promoting stem cell characteristics, aggressive tumor growth and invasion. Cancer Res 71:4015–4027

    Article  CAS  Google Scholar 

  • Kong L, Zhou Y, Bu H et al (2016) Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. J Exp Clin Cancer Res 35:131

    Article  Google Scholar 

  • Koukourakis MI, Giatromanolaki A, Harris AL et al (2006) Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Res 66:632–637

    Article  CAS  Google Scholar 

  • Kumar V, Donthireddy L, Marvel D et al (2017) Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32:654–668

    Article  CAS  Google Scholar 

  • Landskron G, De la Fuente M, Thuwaji P et al (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:149–185

    Article  Google Scholar 

  • Laoui D, Van Overmeire E, Di Conza G et al (2014) Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res 74:24–30

    Article  CAS  Google Scholar 

  • Laviron M, Boissonnas A (2019) Ontogeny of tumor-associated macrophages. Front Immunol 10:1799

    Article  CAS  Google Scholar 

  • Lazar AD, Dinescu S, Costache M (2020) Deciphering the molecular landscape of cutaneous squamous cell carcinoma for better diagnosis and treatment. J Clin Med 9:2228

    Article  CAS  Google Scholar 

  • Lazăr AD, Dinescu S, Costache M (2020) The non-coding landscape of cutaneous malignant melanoma: a possible route to efficient targeted therapy. Cancers 12:3378

    Article  Google Scholar 

  • Lee HJ, Ryu J, Jung Y et al (2016) Glycerol-3-phosphate acyltransferase-1 upregulation by O-GlcNAcylation of Sp1 protects against hypoxia-induced mouse embryonic stem cell apoptosis via mTOR activation. Cell Death Dis 7:e2158

    Article  CAS  Google Scholar 

  • Lees JR (2015) Interferon-γ in autoimmunity: a complicated player on a complex stage. Cytokine 74:18–26

    Article  CAS  Google Scholar 

  • Li Q, Fu GB, Zheng JT et al (2013) NADPH oxidase subunit p22(phox)-mediated reactive oxygen species contribute to angiogenesis and tumor growth through AKT and ERK1/2 signaling pathways in prostate cancer. BBA 12:3375–3385

    Google Scholar 

  • Li A, Vincent J, Cates DM et al (2009) Low levels of tumor necrosis factor 𝛼 increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res 69:338–348

    Article  CAS  Google Scholar 

  • Li R, Hebert JD, Lee TA et al (2017) Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways. Cancer Res 77:279–320

    Article  CAS  Google Scholar 

  • Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290

    Article  CAS  Google Scholar 

  • Lin Y, Choksi S, Shen HM et al (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279:10822–10828

    Article  CAS  Google Scholar 

  • Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12:76

    Article  Google Scholar 

  • Liu G, Bi Y, Shen B et al (2014) SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1alpha-dependent glycolysis. Cancer Res 74:727–737

    Article  CAS  Google Scholar 

  • Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16:5928–5935

    Article  CAS  Google Scholar 

  • Mantovani A, Barajon I, Garlanda C (2018) IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev 281:57–61

    Article  CAS  Google Scholar 

  • McAllister SS, Weinberg RA (2014) The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 16:717–727

    Article  CAS  Google Scholar 

  • Mojic M, Takeda K, Hayakawa Y (2017) The dark side of IFN-γ: its role in promoting cancer immunoevasion. Int J Mol Sci 19:89

    Article  Google Scholar 

  • Montfort A, Colacios C, Levade T et al (2019) The TNF Paradox in cancer progression and immunotherapy. Front Immunol 10:1818

    Article  CAS  Google Scholar 

  • Morrison D, Parvani JG, Schiemann WP (2013) The relevance of the TGF-𝛽 paradox to EMT-MET programs. Cancer Lett 341:30–40

    Article  CAS  Google Scholar 

  • Murata M, Thanan R, Ma N et al (2012) Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. Biomed Biotechnol 2012:623019

    Google Scholar 

  • Natarajan S, Foreman KM, Soriano MI et al (2019) Collagen remodeling in the hypoxic tumor-mesothelial niche promotes ovarian cancer metastasis. Cancer Res 79(9):2271–2284

    Article  CAS  Google Scholar 

  • Neophytou CM, Pierides C, Christodoulou MI et al (2020) The role of tumor-associated myeloid cells in modulating cancer therapy. Front Oncol 10:899

    Article  Google Scholar 

  • Neophytou CM, Panagi M, Stylianopoulos T et al (2021) The role of tumor microenvironment in cancer metastasis: molecular mechanisms and therapeutic opportunities. Cancers 13:2053

    Article  CAS  Google Scholar 

  • Noman MZ, Desantis G, Janji B et al (2014) PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med 211:781–790

    Article  CAS  Google Scholar 

  • Nurmik M, Ullmann P, Rodriguez F et al (2020) In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer 146:895–905

    Article  CAS  Google Scholar 

  • Nyberg P, Salo T, Kalluri R (2008) Tumor microenvironment and angiogenesis. Front Biosci 13:6537

    Article  CAS  Google Scholar 

  • Nywening TM, Wang-Gillam A, Sanford DE et al (2016) Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a singlecentre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol 17:651–662

    Article  CAS  Google Scholar 

  • Ohta A, Gorelik E, Prasad SJ et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103:13132–13137

    Article  CAS  Google Scholar 

  • Otrock ZK, Hatoum HA, Awada AH et al (2009) Hypoxiainducible factor in cancer angiogenesis: structure, regulation and clinical perspectives. Crit Rev Oncol Hematol 70:93–102

    Article  Google Scholar 

  • Ottensmeier CH, Perry KL, Harden EL et al (2016) Upregulated glucose metabolism correlates inversely with CD8+T-cell infiltration and survival in squamous cell carcinoma. Cancer Res 76:4136–4148

    Article  CAS  Google Scholar 

  • Paolino M, Choidas A, Wallner S et al (2014) The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nat Cell Biol 507:508–512

    CAS  Google Scholar 

  • Papageorgis P (2015) TGFbeta signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol 2015:587193

    Article  Google Scholar 

  • Pastula A, Marcinkiewicz J (2011) Myeloid-derived suppressor cells: a double-edged sword? Int J Exp Pathol 92:73–78

    Article  CAS  Google Scholar 

  • Pauken KE, Wherry EJ (2015) Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:265–276

    Article  CAS  Google Scholar 

  • Pauken KE, Sammons MA, Odorizzi PM et al (2016) Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354:1160–1165

    Article  CAS  Google Scholar 

  • Petrova V, Annicchiarico-Petruzzelli M, Melino G et al (2018) The hypoxic tumour microenvironment. Oncogenesis 7(1):10

    Article  Google Scholar 

  • Philip M, Fairchild L, Sun L et al (2017) Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545:452–456

    Article  CAS  Google Scholar 

  • Pietras K, Ostman A (2010) Hallmarks of cancer: interactions with the tumor stroma. Exp Cell Res 316:1324–1331

    Article  CAS  Google Scholar 

  • Qian B, Deng Y, Im JH et al (2009) Distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4:e6562

    Article  Google Scholar 

  • Qian BZ, Li J, Zhang H et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    Article  CAS  Google Scholar 

  • Qian S, Golubnitschaja O, Zhan X (2019) Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J 10(4):365–381

    Article  Google Scholar 

  • Robinson BD, Sica GL, Liu YF et al (2009) Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 15:2433–2441

    Article  CAS  Google Scholar 

  • Romero-Garcia S, Lopez-Gonzalez JS, Báez-Viveros JL et al (2011) Tumor cell metabolism: an integral view. Cancer Biol Ther 12:939–948

    Article  CAS  Google Scholar 

  • Ruffell B, Chang-Strachan D, Chan V et al (2014) Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26:623–637

    Article  CAS  Google Scholar 

  • Samatov TR, Tonevitsky AG, Schumacher U (2013) Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol Cancer 12(1):107

    Article  Google Scholar 

  • Sanchez LR, Borriello L, Entenberg D et al (2019) The emerging roles of macrophages in cancer metastasis and response to chemotherapy. J Leukoc Biol 106:259–274

    Article  CAS  Google Scholar 

  • Santibanez JF, Quintanilla M, Bernabeu C (2011) TGF-𝛽/TGF-𝛽 receptor system and its role in physiological and pathological conditions. Clin Sci 121:233–251

    Article  CAS  Google Scholar 

  • Saraiva M, Vieira P, O’Garra A (2020) Biology and therapeutic potential of interleukin-10. J Exp Med 217(1):e20190418

    Article  Google Scholar 

  • Schietinger A, Philip M, Krisnawan VE et al (2016) Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45(2):389–401

    Article  CAS  Google Scholar 

  • Schito L, Semenza GL (2016) Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2:758–770

    Article  Google Scholar 

  • Semba H, Takeda N, Isagawa T et al (2016) HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun 7:11635

    Article  CAS  Google Scholar 

  • Shen M, Kang Y (2018) Complex interplay between tumor microenvironment and cancer therapy. Front Med 12(4):426–439

    Article  Google Scholar 

  • Sivridis E, Giatromanolaki A, Koukourakis MI (2004) Stromatogenesis and tumour progression. Int J Surg Pathol 12:1–9

    Article  Google Scholar 

  • Smith HA, Kang Y (2013) The metastasis-promoting roles of tumor-associated immune cells. J Mol Med 91:411–429

    Article  CAS  Google Scholar 

  • Srinivasan S, Chitalia V, Meyer RD et al (2015) Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 18(4):449–462

    Article  CAS  Google Scholar 

  • Stylianopoulos T, Martin JD, Snuderl M et al (2013) Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 73:3833–3841

    Article  CAS  Google Scholar 

  • Sun S, Dong H, Yan T et al (2020) Role of TSP-1 as prognostic marker in various cancers: a systematic review and meta-analysis. BMC Med Genet 21(1):139

    Article  CAS  Google Scholar 

  • Szostak B, Machaj F, Rosik J et al (2019) CTLA4 antagonists in phase I and phase II clinical trials, current status and future perspectives for cancer therapy. Expert Opin Investig Drugs 28(2):149–159

    Article  CAS  Google Scholar 

  • Topalian SL, Taube JM, Anders RA et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287

    Article  CAS  Google Scholar 

  • Triner D, Shah YM (2016) Hypoxia-inducible factors: a central link between inflammation and cancer. J Clin Invest 126:3689–3698

    Article  Google Scholar 

  • Tsai YP, Wu KJ (2012) Hypoxia-regulated target genes implicated in tumor metastasis. J Biomed Sci 19:102

    Article  CAS  Google Scholar 

  • van Grevenstein WM, Hofland LJ, van Rossen ME et al (2007) Inflammatory cytokines stimulate the adhesion of colon carcinoma cells to mesothelial monolayers. Dig Dis Sci 52(10):2775–2783

    Article  Google Scholar 

  • Wang R, Zhang J, Chen S et al (2011) Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer 74:188–196

    Article  Google Scholar 

  • Wang M, Zhao J, Zhang L et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8:761–773

    Article  CAS  Google Scholar 

  • Wculek SK, Malanchi I (2015) Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528:413–417

    Article  CAS  Google Scholar 

  • Wei R, Liu S, Zhang S et al (2020) Cellular and extracellular components in tumor microenvironment and their application in early diagnosis of cancers. Anal Cell Pathol (Amst) 2020:6283796

    Google Scholar 

  • Wherry EJ (2011) T cell exhaustion. Nat Immunol 12:492–499

    Article  CAS  Google Scholar 

  • Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437:141–146

    Article  CAS  Google Scholar 

  • Xu J, Lamouille S, Derynck R (2009) TGF-Β-induced epithelial to mesenchymal transition. Cell Res 19:156–172

    Article  CAS  Google Scholar 

  • Yan Y, Chen X, Wang X et al (2019) The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res 38:171

    Article  Google Scholar 

  • Yang S, Gao H (2017) Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res 126:97–108

    Article  CAS  Google Scholar 

  • Yang H, Bocchetta M, Kroczynska B et al (2006) TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci U S A 103(27):10397–10402

    Article  CAS  Google Scholar 

  • Yang J, Yan J, Liu B (2018) Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol 9:978

    Article  Google Scholar 

  • Zhao X, Sun G, Sun X et al (2016) A novel differentiation pathway from CD4+ T cells to CD4 T cells for maintaining immune system homeostasis. Cell Death Dis 7(4):e2193

    Article  CAS  Google Scholar 

  • Zhu Y, Herndon JM, Sojka DK et al (2017) Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 47(3):597

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by UEFISCDI PN-III-P1-1.1-PD-2016-2057 (46PD/2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorina Dinescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Balahura (Stamat), LR., Lazar, AD., Dinescu, S., Costache, M. (2022). Tumor Microenvironment Complexity: A Pathological Milieu that Innately Modulates Cancer Progression. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_89-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics