Skip to main content
Log in

The Extracellular Matrix in Digestive Cancer

  • Review Paper
  • Published:
Cancer Microenvironment

Abstract

The extracellular components of the cancer microenvironment play a critical role in tumor initiation, progression and invasion. In this review we examine the normal formation and function of the basement membrane and extracellular matrix. We characterize the interactions between the matrix and the epithelium and explore the causes and consequences of the extracellular remodeling that accompanies carcinogenesis. Finally, we address the therapeutic possibilities of incorporating matrix as well as epithelial strategies in the management of digestive cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Worthley D, Giraud A, Wang T (2010) Stromal fibroblasts in digestive cancer. Cancer Microenvironment. In press.

  2. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    Article  CAS  PubMed  Google Scholar 

  3. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  4. Gaggioli C, Hooper S, Hidalgo-Carcedo C et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400

    Article  CAS  PubMed  Google Scholar 

  5. Liotta LA, Kohn EC (2001) The microenvironment of the tumour–host interface. Nature 411:375–379

    Article  CAS  PubMed  Google Scholar 

  6. Nelson CM, Bissell MJ (2006) Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22:287–309

    Article  CAS  PubMed  Google Scholar 

  7. Bissell MJ, Hall HG, Parry G (1982) How does the extracellular matrix direct gene expression? J Theor Biol 99:31–68

    Article  CAS  PubMed  Google Scholar 

  8. Coulombre JL, Coulombre AJ (1971) Metaplastic induction of scales and feathers in the corneal anterior epithelium of the chick embryo. Dev Biol 25:464–478

    Article  CAS  PubMed  Google Scholar 

  9. Cunha GR, Young P, Christov K et al (1995) Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme. Acta Anat (Basel) 152:195–204

    Article  CAS  Google Scholar 

  10. Littlepage LE, Egeblad M, Werb Z (2005) Coevolution of cancer and stromal cellular responses. Cancer Cell 7:499–500

    Article  CAS  PubMed  Google Scholar 

  11. Radisky D, Muschler J, Bissell MJ (2002) Order and disorder: the role of extracellular matrix in epithelial cancer. Cancer Investig 20:139–153

    Article  Google Scholar 

  12. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1–C9

    CAS  PubMed  Google Scholar 

  13. Simon-Assmann P, Kedinger M, De Arcangelis A, Rousseau V, Simo P (1995) Extracellular matrix components in intestinal development. Experientia 51:883–900

    Article  CAS  PubMed  Google Scholar 

  14. Schuppan D, Schmid M, Somasundaram R et al (1998) Collagens in the liver extracellular matrix bind hepatocyte growth factor. Gastroenterology 114:139–152

    Article  CAS  PubMed  Google Scholar 

  15. Lodish H, Berk A, Kaiser C et al (2008) Integrating cells into tissues. In: Molecular cell biology, 6th edn. New York: Freeman

  16. Huntsman DG, Carneiro F, Lewis FR et al (2001) Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N Engl J Med 344:1904–1909

    Article  CAS  PubMed  Google Scholar 

  17. Potter JD (1999) Colorectal cancer: molecules and populations. J Natl Cancer Inst 91:916–932

    Article  CAS  PubMed  Google Scholar 

  18. Chang TL, Ito K, Ko TK et al (2010) Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology 138:255–265 e251–253

    Article  CAS  PubMed  Google Scholar 

  19. Krishnan M, Singh AB, Smith JJ et al (2010) HDAC inhibitors regulate claudin-1 expression in colon cancer cells through modulation of mRNA stability. Oncogene 29:305–312

    Article  CAS  PubMed  Google Scholar 

  20. Yoon CH, Kim MJ, Park MJ et al (2010) Claudin-1 acts through c-Abl-protein kinase Cdelta (PKCdelta) signaling and has a causal role in the acquisition of invasive capacity in human liver cells. J Biol Chem 285:226–233

    Article  CAS  PubMed  Google Scholar 

  21. Lioni M, Brafford P, Andl C et al (2007) Dysregulation of claudin-7 leads to loss of E-cadherin expression and the increased invasion of esophageal squamous cell carcinoma cells. Am J Pathol 170:709–721

    Article  CAS  PubMed  Google Scholar 

  22. Dowling J, Yu QC, Fuchs E (1996) Beta4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J Cell Biol 134:559–572

    Article  CAS  PubMed  Google Scholar 

  23. Rowe RG, Weiss SJ (2009) Navigating ECM barriers at the invasive front: the cancer cell–stroma interface. Annu Rev Cell Dev Biol 25:567–595

    Article  CAS  PubMed  Google Scholar 

  24. Khoshnoodi J, Pedchenko V, Hudson BG (2008) Mammalian collagen IV. Microsc Res Tech 71:357–370

    Article  CAS  PubMed  Google Scholar 

  25. Simon-Assmann P, Simo P, Bouziges F, Haffen K, Kedinger M (1990) Synthesis of basement membrane proteins in the small intestine. Digestion 46(Suppl 2):12–21

    Article  CAS  PubMed  Google Scholar 

  26. McLin VA, Henning SJ, Jamrich M (2009) The role of the visceral mesoderm in the development of the gastrointestinal tract. Gastroenterology 136:2074–2091

    Article  CAS  PubMed  Google Scholar 

  27. Powell DW, Adegboyega PA, Di Mari JF, Mifflin RC (2005) Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am J Physiol Gastrointest Liver Physiol 289:G2–G7

    Article  CAS  PubMed  Google Scholar 

  28. Hynes RO, Yamada KM (1982) Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95:369–377

    Article  CAS  PubMed  Google Scholar 

  29. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed  Google Scholar 

  30. Xu R, Boudreau A, Bissell MJ (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28:167–176

    Article  PubMed  Google Scholar 

  31. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1032

    Article  CAS  PubMed  Google Scholar 

  32. Bray D, Levin MD, Morton-Firth CJ (1998) Receptor clustering as a cellular mechanism to control sensitivity. Nature 393:85–88

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz MA, Assoian RK (2001) Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114:2553–2560

    CAS  PubMed  Google Scholar 

  34. Danilkovitch A, Donley S, Skeel A, Leonard EJ (2000) Two independent signaling pathways mediate the antiapoptotic action of macrophage-stimulating protein on epithelial cells. Mol Cell Biol 20:2218–2227

    Article  CAS  PubMed  Google Scholar 

  35. Gille H, Downward J (1999) Multiple ras effector pathways contribute to G(1) cell cycle progression. J Biol Chem 274:22033–22040

    Article  CAS  PubMed  Google Scholar 

  36. Takuwa N, Fukui Y, Takuwa Y (1999) Cyclin D1 expression mediated by phosphatidylinositol 3-kinase through mTOR-p70(S6K)-independent signaling in growth factor-stimulated NIH 3T3 fibroblasts. Mol Cell Biol 19:1346–1358

    CAS  PubMed  Google Scholar 

  37. Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562

    Article  CAS  PubMed  Google Scholar 

  38. Puthalakath H, Villunger A, O’Reilly LA et al (2001) Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293:1829–1832

    Article  CAS  PubMed  Google Scholar 

  39. Liu Z, Li H, Derouet M et al (2006) Oncogenic ras inhibits anoikis of intestinal epithelial cells by preventing the release of a mitochondrial pro-apoptotic protein Omi/HtrA2 into the cytoplasm. J Biol Chem 281:14738–14747

    Article  CAS  PubMed  Google Scholar 

  40. Boisvert-Adamo K, Aplin AE (2008) Mutant B-RAF mediates resistance to anoikis via Bad and Bim. Oncogene 27:3301–3312

    Article  CAS  PubMed  Google Scholar 

  41. Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279:12001–12004

    Article  CAS  PubMed  Google Scholar 

  42. Paszek MJ, Zahir N, Johnson KR et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  43. Berrier AL, Yamada KM (2007) Cell–matrix adhesion. J Cell Physiol 213:565–573

    Article  CAS  PubMed  Google Scholar 

  44. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    Article  CAS  PubMed  Google Scholar 

  45. Wipff PJ, Hinz B (2008) Integrins and the activation of latent transforming growth factor beta1—an intimate relationship. Eur J Cell Biol 87:601–615

    Article  CAS  PubMed  Google Scholar 

  46. Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359:2814–2823

    Article  CAS  PubMed  Google Scholar 

  47. Ikeda K, Iyama K, Ishikawa N et al (2006) Loss of expression of type IV collagen alpha5 and alpha6 chains in colorectal cancer associated with the hypermethylation of their promoter region. Am J Pathol 168:856–865

    Article  CAS  PubMed  Google Scholar 

  48. Spaderna S, Schmalhofer O, Hlubek F et al (2006) A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131:830–840

    Article  CAS  PubMed  Google Scholar 

  49. Bechetoille N, Haftek M, Staquet MJ, Cochran AJ, Schmitt D, Berthier-Vergnes O (2000) Penetration of human metastatic melanoma cells through an authentic dermal-epidermal junction is associated with dissolution of native collagen types IV and VII. Melanoma Res 10:427–434

    Article  CAS  PubMed  Google Scholar 

  50. Franz M, Richter P, Geyer C et al (2007) Mesenchymal cells contribute to the synthesis and deposition of the laminin-5 gamma2 chain in the invasive front of oral squamous cell carcinoma. J Mol Histol 38:183–190

    Article  CAS  PubMed  Google Scholar 

  51. Comoglio PM, Trusolino L (2005) Cancer: the matrix is now in control. Nat Med 11:1156–1159

    Article  CAS  PubMed  Google Scholar 

  52. McKerrow JH, Bhargava V, Hansell E et al (2000) A functional proteomics screen of proteases in colorectal carcinoma. Mol Med 6:450–460

    CAS  PubMed  Google Scholar 

  53. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  Google Scholar 

  54. Hotary KB, Yana I, Sabeh F et al (2002) Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J Exp Med 195:295–308

    Article  CAS  PubMed  Google Scholar 

  55. Sabeh F, Ota I, Holmbeck K et al (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 167:769–781

    Article  CAS  PubMed  Google Scholar 

  56. Morini M, Mottolese M, Ferrari N et al (2000) The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity. Int J Cancer 87:336–342

    Article  CAS  PubMed  Google Scholar 

  57. Brooks PC, Stromblad S, Sanders LC et al (1996) Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85:683–693

    Article  CAS  PubMed  Google Scholar 

  58. Hotary K, Li XY, Allen E, Stevens SL, Weiss SJ (2006) A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev 20:2673–2686

    Article  CAS  PubMed  Google Scholar 

  59. Perez SE, Cano DA, Dao-Pick T, Rougier JP, Werb Z, Hebrok M (2005) Matrix metalloproteinases 2 and 9 are dispensable for pancreatic islet formation and function in vivo. Diabetes 54:694–701

    Article  CAS  PubMed  Google Scholar 

  60. Bendrik C, Robertson J, Gauldie J, Dabrosin C (2008) Gene transfer of matrix metalloproteinase-9 induces tumor regression of breast cancer in vivo. Cancer Res 68:3405–3412

    Article  CAS  PubMed  Google Scholar 

  61. Cheng S, Pollock AS, Mahimkar R, Olson JL, Lovett DH (2006) Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. FASEB J 20:1898–1900

    Article  CAS  PubMed  Google Scholar 

  62. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S (1998) Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051

    CAS  PubMed  Google Scholar 

  63. Sternlicht MD, Lochter A, Sympson CJ et al (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146

    Article  CAS  PubMed  Google Scholar 

  64. Radisky DC, Levy DD, Littlepage LE et al (2005) Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436:123–127

    Article  CAS  PubMed  Google Scholar 

  65. List K, Szabo R, Molinolo A et al (2005) Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19:1934–1950

    Article  CAS  PubMed  Google Scholar 

  66. Linder S (2009) Invadosomes at a glance. J Cell Sci 122:3009–3013

    Article  CAS  PubMed  Google Scholar 

  67. Poincloux R, Lizarraga F, Chavrier P (2009) Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci 122:3015–3024

    Article  CAS  PubMed  Google Scholar 

  68. Wolf K, Friedl P (2009) Mapping proteolytic cancer cell–extracellular matrix interfaces. Clin Exp Metastasis 26:289–298

    Article  CAS  PubMed  Google Scholar 

  69. Yamada K, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610

    Article  CAS  PubMed  Google Scholar 

  70. Kleinman HK, Martin GR (2005) Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol 15:378–386

    Article  CAS  PubMed  Google Scholar 

  71. Futaki S, Hayashi Y, Yamashita M et al (2003) Molecular basis of constitutive production of basement membrane components. Gene expression profiles of Engelbreth-Holm-Swarm tumor and F9 embryonal carcinoma cells. J Biol Chem 278:50691–50701

    Article  CAS  PubMed  Google Scholar 

  72. Fridman R, Kibbey MC, Royce LS et al (1991) Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with Matrigel. J Natl Cancer Inst 83:769–774

    Article  CAS  PubMed  Google Scholar 

  73. Vukicevic S, Kleinman HK, Luyten FP, Roberts AB, Roche NS, Reddi AH (1992) Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202:1–8

    Article  CAS  PubMed  Google Scholar 

  74. Reuter JA, Ortiz-Urda S, Kretz M et al (2009) Modeling inducible human tissue neoplasia identifies an extracellular matrix interaction network involved in cancer progression. Cancer Cell 15:477–488

    Article  CAS  PubMed  Google Scholar 

  75. Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A (2009) Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 101:1308–1324

    Article  CAS  PubMed  Google Scholar 

  76. Olive KP, Jacobetz MA, Davidson CJ et al (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324:1457–1461

    Article  CAS  PubMed  Google Scholar 

  77. Yang XH, Flores LM, Li Q et al (2010) Disruption of Laminin-Integrin-CD151-Focal Adhesion Kinase Axis Sensitizes Breast Cancer Cells to ErbB2 Antagonists. Cancer Res 70:2256–2263

    Article  CAS  PubMed  Google Scholar 

  78. Ning S, Nemeth JA, Hanson RL, Forsythe K, Knox SJ (2008) Anti-integrin monoclonal antibody CNTO 95 enhances the therapeutic efficacy of fractionated radiation therapy in vivo. Mol Cancer Ther 7:1569–1578

    Article  CAS  PubMed  Google Scholar 

  79. Hsu AR, Veeravagu A, Cai W, Hou LC, Tse V, Chen X (2007) Integrin alpha v beta 3 antagonists for anti-angiogenic cancer treatment. Recent Pat Anticancer Drug Discov 2:143–158

    Article  CAS  PubMed  Google Scholar 

  80. Nemeth JA, Nakada MT, Trikha M et al (2007) Alpha-v integrins as therapeutic targets in oncology. Cancer Investig 25:632–646

    Article  CAS  Google Scholar 

  81. Lu X, Lu D, Scully M, Kakkar V (2008) The role of integrins in cancer and the development of anti-integrin therapeutic agents for cancer therapy. Perspect Med Chem 2:57–73

    CAS  Google Scholar 

  82. Roy R, Yang J, Moses MA (2009) Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 27:5287–5297

    Article  CAS  PubMed  Google Scholar 

  83. Tian M, Cui YZ, Song GH et al (2008) Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. BMC Cancer 8:241

    Article  PubMed  CAS  Google Scholar 

  84. Yokoyama M, Ochi K, Ichimura M et al (2002) Matrix metalloproteinase-2 in pancreatic juice for diagnosis of pancreatic cancer. Pancreas 24:344–347

    Article  PubMed  Google Scholar 

  85. Kuhlmann KF, van Till JW, Boermeester MA et al (2007) Evaluation of matrix metalloproteinase 7 in plasma and pancreatic juice as a biomarker for pancreatic cancer. Cancer Epidemiol Biomark Prev 16:886–891

    Article  CAS  Google Scholar 

  86. Jones LE, Humphreys MJ, Campbell F, Neoptolemos JP, Boyd MT (2004) Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res 10:2832–2845

    Article  CAS  PubMed  Google Scholar 

  87. Hilska M, Roberts PJ, Collan YU et al (2007) Prognostic significance of matrix metalloproteinases-1, -2, -7 and -13 and tissue inhibitors of metalloproteinases-1, -2, -3 and -4 in colorectal cancer. Int J Cancer 121:714–723

    Article  CAS  PubMed  Google Scholar 

  88. Koskensalo S, Mrena J, Wiksten JP et al (2010) MMP-7 overexpression is an independent prognostic marker in gastric cancer. Tumour Biol 31:149–155

    Article  CAS  PubMed  Google Scholar 

  89. Tutton MG, George ML, Eccles SA, Burton S, Swift RI, Abulafi AM (2003) Use of plasma MMP-2 and MMP-9 levels as a surrogate for tumour expression in colorectal cancer patients. Int J Cancer 107:541–550

    Article  CAS  PubMed  Google Scholar 

  90. Latreille J, Batist G, Laberge F et al (2003) Phase I/II trial of the safety and efficacy of AE-941 (Neovastat) in the treatment of non-small-cell lung cancer. Clin Lung Cancer 4:231–236

    Article  CAS  PubMed  Google Scholar 

  91. Batist G, Patenaude F, Champagne P et al (2002) Neovastat (AE-941) in refractory renal cell carcinoma patients: report of a phase II trial with two dose levels. Ann Oncol 13:1259–1263

    Article  CAS  PubMed  Google Scholar 

  92. Sideras K, Schaefer PL, Okuno SH et al (2006) Low-molecular-weight heparin in patients with advanced cancer: a phase 3 clinical trial. Mayo Clin Proc 81:758–767

    Article  CAS  PubMed  Google Scholar 

  93. Finkelstein JB (2005) Sharks do get cancer: few surprises in cartilage research. J Natl Cancer Inst 97:1562–1563

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Michael Quante for supplying Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Wang.

Additional information

Sources of support

The Royal Australasian College of Physicians Cottrell Fellowship, the Queensland State Government Smart State PhD award and the NHMRC/RG Menzies fellowship (D.L.W).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Worthley, D.L., Giraud, A.S. & Wang, T.C. The Extracellular Matrix in Digestive Cancer. Cancer Microenvironment 3, 177–185 (2010). https://doi.org/10.1007/s12307-010-0053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-010-0053-4

Keywords

Navigation