Skip to main content

Advertisement

Log in

Gastric intestinal metaplasia: progress and remaining challenges

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smyth EC, Nilsson M, Grabsch HI, et al. Gastric cancer. Lancet. 2020;396:635–48.

    CAS  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    PubMed  Google Scholar 

  3. Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021;71:264–79.

    PubMed  PubMed Central  Google Scholar 

  4. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

    CAS  PubMed  Google Scholar 

  5. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process–First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–40.

    CAS  PubMed  Google Scholar 

  6. Stemmermann GN, Hayashi T. Intestinal metaplasia of the gastric mucosa: a gross and microscopic study of its distribution in various disease states. J Natl Cancer Inst. 1968;41:627–34.

    CAS  PubMed  Google Scholar 

  7. Spechler SJ, Souza RF. Barrett’s esophagus. N Engl J Med. 2014;371:836–45.

    CAS  PubMed  Google Scholar 

  8. Goldenring JR, Mills JC. Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond. Gastroenterology. 2022;162:415–30.

    CAS  PubMed  Google Scholar 

  9. Adkins-Threats M, Mills JC. Cell plasticity in regeneration in the stomach and beyond. Curr Opin Genet Dev. 2022;75: 101948.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nowicki-Osuch K, Zhuang L, Jammula S, et al. Molecular phenotyping reveals the identity of Barrett’s esophagus and its malignant transition. Science. 2021;373:760–7.

    CAS  PubMed  Google Scholar 

  11. Huang K, Ramnarayanan K, Zhu F, et al. Genomic and Epigenomic Profiling of High-Risk Intestinal Metaplasia Reveals Molecular Determinants of Progression to Gastric Cancer. Cancer Cell. 2018;33:137-50.e5.

    CAS  PubMed  Google Scholar 

  12. Choi E, Roland JT, Barlow BJ, et al. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut. 2014;63:1711–20.

    PubMed  Google Scholar 

  13. Schmidt PH, Lee JR, Joshi V, et al. Identification of a metaplastic cell lineage associated with human gastric adenocarcinoma. Lab Invest. 1999;79:639–46.

    CAS  PubMed  Google Scholar 

  14. Bockerstett KA, Lewis SA, Noto CN, et al. Single-Cell Transcriptional Analyses Identify Lineage-Specific Epithelial Responses to Inflammation and Metaplastic Development in the Gastric Corpus. Gastroenterology. 2020;159:2116-29.e4.

    CAS  PubMed  Google Scholar 

  15. Bockerstett KA, Lewis SA, Wolf KJ, et al. Single-cell transcriptional analyses of spasmolytic polypeptide-expressing metaplasia arising from acute drug injury and chronic inflammation in the stomach. Gut. 2020;69:1027–38.

    CAS  PubMed  Google Scholar 

  16. Goldenring J. Pyloric metaplasia, pseudopyloric metaplasia, ulcer-associated cell lineage and spasmolytic polypeptide-expressing metaplasia: reparative lineages in the gastrointestinal mucosa. J Pathol. 2018;245:132–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lennerz J, Kim S, Oates E, et al. The transcription factor MIST1 is a novel human gastric chief cell marker whose expression is lost in metaplasia, dysplasia, and carcinoma. Am J Pathol. 2010;177:1514–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Radyk MD, Burclaff J, Willet SG, et al. Metaplastic Cells in the Stomach Arise, Independently of Stem Cells, via Dedifferentiation or Transdifferentiation of Chief Cells. Gastroenterology. 2018;154:839-43.e2.

    PubMed  Google Scholar 

  19. Burclaff J, Osaki LH, Liu D, et al. Targeted Apoptosis of Parietal Cells Is Insufficient to Induce Metaplasia in Stomach. Gastroenterology. 2017;152:762-6.e7.

    CAS  PubMed  Google Scholar 

  20. Choi E, Hendley A, Bailey J, et al. Expression of Activated Ras in Gastric Chief Cells of Mice Leads to the Full Spectrum of Metaplastic Lineage Transitions. Gastroenterology. 2016;150:918-30.e13.

    CAS  PubMed  Google Scholar 

  21. Brown JW, Cho CJ, Mills JC. Paligenosis: cellular remodeling during tissue repair. Annu Rev Physiol. 2022;84:461–83.

    CAS  PubMed  Google Scholar 

  22. Giroux V, Rustgi AK. Metaplasia: tissue injury adaptation and a precursor to the dysplasia-cancer sequence. Nat Rev Cancer. 2017;17:594–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin RU, Mills JC. The cyclical hit model: how paligenosis might establish the mutational landscape in Barrett’s esophagus and esophageal adenocarcinoma. Curr Opin Gastroenterol. 2019;35:363–70.

    PubMed  Google Scholar 

  24. Evans JA, Carlotti E, Lin ML, et al. Clonal Transitions and Phenotypic Evolution in Barrett’s Esophagus. Gastroenterology. 2022;162:1197-209.e13.

    PubMed  Google Scholar 

  25. Correa P, Piazuelo MB, Wilson KT. Pathology of gastric intestinal metaplasia: clinical implications. Am J Gastroenterol. 2010;105:493–8.

    PubMed  PubMed Central  Google Scholar 

  26. Teglbjaerg PS, Nielsen HO. “Small intestinal type” and “colonic type” intestinal metaplasia of the human stomach, and their relationship to the histogenetic types of gastric adenocarcinoma. Acta Pathol Microbiol Scand A. 1978;86A:351–5.

    CAS  PubMed  Google Scholar 

  27. Segura DI, Montero C. Histochemical characterization of different types of intestinal metaplasia in gastric mucosa. Cancer. 1983;52:498–503.

    CAS  PubMed  Google Scholar 

  28. González C, Sanz-Anquela J, Companioni O, et al. Incomplete type of intestinal metaplasia has the highest risk to progress to gastric cancer: results of the Spanish follow-up multicenter study. J Gastroenterol Hepatol. 2016;31:953–8.

    PubMed  Google Scholar 

  29. Busslinger GA, de Barbanson B, Oka R, et al. (2021) Molecular characterization of Barrett's esophagus at single-cell resolution. Proc Natl Acad Sci U S A 118

  30. Lavery DL, Nicholson AM, Poulsom R, et al. The stem cell organisation, and the proliferative and gene expression profile of Barrett’s epithelium, replicates pyloric-type gastric glands. Gut. 2014;63:1854–63.

    CAS  PubMed  Google Scholar 

  31. Zeng Y, Li QK, Roy S, et al. Shared features of metaplasia and the development of adenocarcinoma in the stomach and esophagus. Front Cell Dev Biol. 2023;11:1151790.

    PubMed  PubMed Central  Google Scholar 

  32. Graham DY, Rugge M, Genta RM. Diagnosis: gastric intestinal metaplasia - what to do next? Curr Opin Gastroenterol. 2019;35:535–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jass J, Filipe M. A variant of intestinal metaplasia associated with gastric carcinoma: a histochemical study. Histopathology. 1979;3:191–9.

    CAS  PubMed  Google Scholar 

  34. Rokkas T, Filipe MI, Sladen GE. Detection of an increased incidence of early gastric cancer in patients with intestinal metaplasia type III who are closely followed up. Gut. 1991;32:1110–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brown JW, Das KK, Kalas V, et al. mAb Das-1 recognizes 3’-Sulfated Lewis A/C, which is aberrantly expressed during metaplastic and oncogenic transformation of several gastrointestinal Epithelia. PLoS ONE. 2021;16: e0261082.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen B, Scurrah CR, McKinley ET, et al. Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell. 2021;184:6262-80.e26.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dinis-Ribeiro M, Areia M, de Vries AC, et al. Management of precancerous conditions and lesions in the stomach (MAPS): guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy. 2012;44:74–94.

    CAS  PubMed  Google Scholar 

  38. Rappold GA, Hameister H, Cremer T, et al. c-myc and immunoglobulin kappa light chain constant genes are on the 8q+ chromosome of three Burkitt lymphoma lines with t(2;8) translocations. Embo j. 1984;3:2951–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ye W, Takabayashi H, Yang Y, et al. Regulation of Gastric Lgr5+ve Cell Homeostasis by Bone Morphogenetic Protein (BMP) Signaling and Inflammatory Stimuli. Cell Mol Gastroenterol Hepatol. 2018;5:523–38.

    PubMed  PubMed Central  Google Scholar 

  40. Cravo M, Pinto R, Fidalgo P, et al. Global DNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma. Gut. 1996;39:434–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gonda TA, Kim YI, Salas MC, et al. Folic acid increases global DNA methylation and reduces inflammation to prevent Helicobacter-associated gastric cancer in mice. Gastroenterology. 2012;142:824-33.e7.

    CAS  PubMed  Google Scholar 

  42. Schmid CA, Müller A. FoxD3 is a novel, epigenetically regulated tumor suppressor in gastric carcinogenesis. Gastroenterology. 2013;144:22–5.

    PubMed  Google Scholar 

  43. Cheng AS, Li MS, Kang W, et al. Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology. 2013;144:122-33.e9.

    CAS  PubMed  Google Scholar 

  44. Krishnan V, Lim D, Hoang P, et al. DNA damage signalling as an anti-cancer barrier in gastric intestinal metaplasia. Gut. 2020;69:1738–49.

    CAS  PubMed  Google Scholar 

  45. Cooke MS, Evans MD, Dizdaroglu M, et al. Oxidative DNA damage: mechanisms, mutation, and disease. Faseb j. 2003;17:1195–214.

    CAS  PubMed  Google Scholar 

  46. Kawanishi S, Ohnishi S, Ma N, Hiraku Y, Murata M. Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int J Mol Sci. 2017;18(8):1808.

    PubMed  PubMed Central  Google Scholar 

  47. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    CAS  PubMed  Google Scholar 

  49. Plappert-Helbig U, Libertini S, Frieauff W, et al. Gamma-H2AX immunofluorescence for the detection of tissue-specific genotoxicity in vivo. Environ Mol Mutagen. 2019;60:4–16.

    CAS  PubMed  Google Scholar 

  50. Polley M, Leung S, McShane L, et al. An international Ki67 reproducibility study. J Natl Cancer Inst. 2013;105:1897–906.

    PubMed  PubMed Central  Google Scholar 

  51. Matsuo J, Kimura S, Yamamura A, et al. Identification of Stem Cells in the Epithelium of the Stomach Corpus and Antrum of Mice. Gastroenterology. 2017;152(218–31): e14.

    Google Scholar 

  52. Khurana SS, Riehl TE, Moore BD, et al. The hyaluronic acid receptor CD44 coordinates normal and metaplastic gastric epithelial progenitor cell proliferation. J Biol Chem. 2013;288:16085–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ishimoto T, Nagano O, Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 2011;19:387–400.

    CAS  PubMed  Google Scholar 

  54. Kang W, Rathinavelu S, Samuelson L, et al. Interferon gamma induction of gastric mucous neck cell hypertrophy. Lab Investig J Tech Meth Pathol. 2005;85:702–15.

    CAS  Google Scholar 

  55. Oshima M, Oshima H, Matsunaga A, et al. Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-alpha-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Can Res. 2005;65:9147–51.

    CAS  Google Scholar 

  56. Oue N, Mitani Y, Aung PP, et al. Expression and localization of Reg IV in human neoplastic and non-neoplastic tissues: Reg IV expression is associated with intestinal and neuroendocrine differentiation in gastric adenocarcinoma. J Pathol. 2005;207:185–98.

    CAS  PubMed  Google Scholar 

  57. Lee SH, Jang B, Min J, et al. Up-regulation of Aquaporin 5 Defines Spasmolytic Polypeptide-Expressing Metaplasia and Progression to Incomplete Intestinal Metaplasia. Cell Mol Gastroenterol Hepatol. 2022;13:199–217.

    PubMed  Google Scholar 

  58. Grün D, Lyubimova A, Kester L, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525:251–5.

    PubMed  Google Scholar 

  59. Elmentaite R, Kumasaka N, Roberts K, et al. Cells of the human intestinal tract mapped across space and time. Nature. 2021;597:250–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nowicki-Osuch K, Zhuang L, Cheung TS, et al. Single-cell RNA sequencing unifies developmental programs of esophageal and gastric intestinal metaplasia. Cancer Discov. 2023;13(6):1346–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Y, Song W, Wang J, et al. Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med. 2020;217(2):e20191130.

    PubMed  Google Scholar 

  62. Kang J, Lee B, Kim N, et al. CDX1 and CDX2 expression in intestinal metaplasia, dysplasia and gastric cancer. J Korean Med Sci. 2011;26:647–53.

    PubMed  PubMed Central  Google Scholar 

  63. Mesquita P, Jonckheere N, Almeida R, et al. Human MUC2 mucin gene is transcriptionally regulated by Cdx homeodomain proteins in gastrointestinal carcinoma cell lines. J Biol Chem. 2003;278:51549–56.

    CAS  PubMed  Google Scholar 

  64. Eda A, Osawa H, Yanaka I, et al. Expression of homeobox gene CDX2 precedes that of CDX1 during the progression of intestinal metaplasia. J Gastroenterol. 2002;37:94–100.

    CAS  PubMed  Google Scholar 

  65. Bai Y, Yamamoto H, Akiyama Y, et al. Ectopic expression of homeodomain protein CDX2 in intestinal metaplasia and carcinomas of the stomach. Cancer Lett. 2002;176:47–55.

    CAS  PubMed  Google Scholar 

  66. Li T, Guo H, Li H, et al. MicroRNA-92a-1-5p increases CDX2 by targeting FOXD1 in bile acids-induced gastric intestinal metaplasia. Gut. 2019;68:1751–63.

    CAS  PubMed  Google Scholar 

  67. Gu W, Wang H, Huang X, et al. SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell. 2022;29:101-15.e10.

    CAS  PubMed  Google Scholar 

  68. Grötzinger C, Kneifel J, Patschan D, et al. LI-cadherin: a marker of gastric metaplasia and neoplasia. Gut. 2001;49:73–81.

    PubMed  PubMed Central  Google Scholar 

  69. Katz JP, Perreault N, Goldstein BG, et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology. 2005;128:935–45.

    CAS  PubMed  Google Scholar 

  70. Birbe R, Palazzo JP, Walters R, et al. Guanylyl cyclase C is a marker of intestinal metaplasia, dysplasia, and adenocarcinoma of the gastrointestinal tract. Hum Pathol. 2005;36:170–9.

    CAS  PubMed  Google Scholar 

  71. Hinoi T, Gesina G, Akyol A, et al. CDX2-regulated expression of iron transport protein hephaestin in intestinal and colonic epithelium. Gastroenterology. 2005;128:946–61.

    CAS  PubMed  Google Scholar 

  72. Roy S, Esmaeilniakooshkghazi A, Patnaik S, et al. Villin-1 and Gelsolin Regulate Changes in Actin Dynamics That Affect Cell Survival Signaling Pathways and Intestinal Inflammation. Gastroenterology. 2018;154:1405-20.e2.

    CAS  PubMed  Google Scholar 

  73. Cubas R, Zhang S, Li M, et al. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway. Mol Cancer. 2010;9:253.

    PubMed  PubMed Central  Google Scholar 

  74. Weis VG, Sousa JF, LaFleur BJ, et al. Heterogeneity in mouse spasmolytic polypeptide-expressing metaplasia lineages identifies markers of metaplastic progression. Gut. 2013;62:1270–9.

    CAS  PubMed  Google Scholar 

  75. De Salvo C, Pastorelli L, Petersen CP, et al. Interleukin 33 Triggers Early Eosinophil-Dependent Events Leading to Metaplasia in a Chronic Model of Gastritis-Prone Mice. Gastroenterology. 2021;160:302-16.e7.

    PubMed  Google Scholar 

  76. Chajès V, Jenab M, Romieu I, et al. Plasma phospholipid fatty acid concentrations and risk of gastric adenocarcinomas in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Am J Clin Nutr. 2011;94:1304–13.

    PubMed  Google Scholar 

  77. Jiang M, Wu N, Xu B, et al. Fatty acid-induced CD36 expression via O-GlcNAcylation drives gastric cancer metastasis. Theranostics. 2019;9:5359–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hirata Y, Sezaki T, Tamura-Nakano M, et al. Fatty acids in a high-fat diet potentially induce gastric parietal-cell damage and metaplasia in mice. J Gastroenterol. 2017;52:889–903.

    CAS  PubMed  Google Scholar 

  79. Fox JG, Wang TC, Rogers AB, et al. Host and microbial constituents influence Helicobacter pylori-induced cancer in a murine model of hypergastrinemia. Gastroenterology. 2003;124:1879–90.

    PubMed  Google Scholar 

  80. Mutoh H, Sakurai S, Satoh K, et al. Cdx1 induced intestinal metaplasia in the transgenic mouse stomach: comparative study with Cdx2 transgenic mice. Gut. 2004;53:1416–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nam KT, Lee HJ, Mok H, et al. Amphiregulin-deficient mice develop spasmolytic polypeptide expressing metaplasia and intestinal metaplasia. Gastroenterology. 2009;136(4):1288–96.

    CAS  PubMed  Google Scholar 

  82. Shinohara M, Mao M, Keeley TM, et al. Bone morphogenetic protein signaling regulates gastric epithelial cell development and proliferation in mice. Gastroenterology. 2010;139:2050-60.e2.

    CAS  PubMed  Google Scholar 

  83. Okumura T, Ericksen RE, Takaishi S, et al. K-ras mutation targeted to gastric tissue progenitor cells results in chronic inflammation, an altered microenvironment, and progression to intraepithelial neoplasia. Cancer Res. 2010;70:8435–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ito K, Chuang LS, Ito T, et al. Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology. 2011;140:1536-46.e8.

    CAS  PubMed  Google Scholar 

  85. Ray K, Bell K, Yan J, et al. Epithelial tissues have varying degrees of susceptibility to Kras(G12D)-initiated tumorigenesis in a mouse model. PLoS ONE. 2011;6: e16786.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Asano N, Imatani A, Watanabe T, et al. Cdx2 Expression and Intestinal Metaplasia Induced by H pylori Infection of Gastric Cells Is Regulated by NOD1-Mediated Innate Immune Responses. Cancer Res. 2016;76:1135–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li XB, Yang G, Zhu L, et al. Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice. Cell Res. 2016;26:838–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Roy SAB, Allaire JM, Ouellet C, et al. Loss of mesenchymal bone morphogenetic protein signaling leads to development of reactive stroma and initiation of the gastric neoplastic cascade. Sci Rep. 2016;6:32759.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Leushacke M, Tan S, Wong A, et al. Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach. Nat Cell Biol. 2017;19:774–86.

    CAS  PubMed  Google Scholar 

  90. Maastricht Pathology. 11th Joint Meeting of the British Division of the International Academy of Pathology and the Pathological Society of Great Britain and Ireland, 19–22 June 2018. J Pathol. 2018;246(1):1–46.

    Google Scholar 

  91. Suzuki K, Sentani K, Tanaka H, et al. Deficiency of Stomach-Type Claudin-18 in Mice Induces Gastric Tumor Formation Independent of H pylori Infection. Cell Mol Gastroenterol Hepatol. 2019;8:119–42.

    PubMed  PubMed Central  Google Scholar 

  92. Gobert AP, Boutaud O, Asim M, et al. Dicarbonyl Electrophiles Mediate Inflammation-Induced Gastrointestinal Carcinogenesis. Gastroenterology. 2021;160(1256–68): e9.

    Google Scholar 

  93. Douchi D, Yamamura A, Matsuo J, et al. A Point Mutation R122C in RUNX3 Promotes the Expansion of Isthmus Stem Cells and Inhibits Their Differentiation in the Stomach. Cell Mol Gastroenterol Hepatol. 2022;13:1317–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cancer Genome Atlas Research N. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.

    Google Scholar 

  95. Won Y, Choi E. Mouse models of Kras activation in gastric cancer. Exp Mol Med. 2022;54:1793–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Matsuo J, Douchi D, Myint K, et al. Iqgap3-Ras axis drives stem cell proliferation in the stomach corpus during homoeostasis and repair. Gut. 2021;70:1833–46.

    CAS  PubMed  Google Scholar 

  97. Hata M, Kinoshita H, Hayakawa Y, et al. GPR30-Expressing Gastric Chief Cells Do Not Dedifferentiate But Are Eliminated via PDK-Dependent Cell Competition During Development of Metaplasia. Gastroenterology. 2020;158:1650-66.e15.

    CAS  PubMed  Google Scholar 

  98. Min J, Zhang C, Bliton RJ, et al. Dysplastic Stem Cell Plasticity Functions as a Driving Force for Neoplastic Transformation of Precancerous Gastric Mucosa. Gastroenterology. 2022;163:875–90.

    PubMed  Google Scholar 

  99. Hood FE, Sahraoui YM, Jenkins RE, et al. Ras protein abundance correlates with Ras isoform mutation patterns in cancer. Oncogene. 2023;42:1224–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Douchi D, Yamamura A, Matsuo J, et al. Induction of Gastric Cancer by Successive Oncogenic Activation in the Corpus. Gastroenterology. 2021;161(1907–23): e26.

    Google Scholar 

  101. Puri P, Grimmett G, Faraj R, et al. Elevated Protein Kinase A Activity in Stomach Mesenchyme Disrupts Mesenchymal-epithelial Crosstalk and Induces Preneoplasia. Cell Mol Gastroenterol Hepatol. 2022;14:643-68.e1.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li C, Liu W, Fang D. Histological and electron-microscopic observations on the mucosa of pediculate gastric wall graft transplanted to the intestines in Wistar rats. Chin Med J (Engl). 1996;109:77–82.

    CAS  PubMed  Google Scholar 

  103. Fischer AS, Mullerke S, Arnold A, et al. R-spondin/YAP axis promotes gastric oxyntic gland regeneration and Helicobacter pylori-associated metaplasia in mice. J Clin Invest. 2022;132(21):e151363.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wölffling S, Daddi AA, Imai-Matsushima A, et al. EGF and BMPs Govern Differentiation and Patterning in Human Gastric Glands. Gastroenterology. 2021;161:623-36.e16.

    PubMed  Google Scholar 

  105. Pang MJ, Burclaff JR, Jin R, et al. Gastric Organoids: Progress and Remaining Challenges. Cell Mol Gastroenterol Hepatol. 2022;13:19–33.

    CAS  PubMed  Google Scholar 

  106. Caldwell B, Meyer AR, Weis JA, et al. Chief cell plasticity is the origin of metaplasia following acute injury in the stomach mucosa. Gut. 2022;71:1068–77.

    CAS  PubMed  Google Scholar 

  107. Hayakawa Y, Fox J, Wang T. Isthmus Stem Cells Are the Origins of Metaplasia in the Gastric Corpus. Cell Mol Gastroenterol Hepatol. 2017;4:89–94.

    PubMed  PubMed Central  Google Scholar 

  108. Que J, Garman K, Souza R, et al. Pathogenesis and Cells of Origin of Barrett’s Esophagus. Gastroenterology. 2019;157:349-64.e1.

    PubMed  Google Scholar 

  109. Jiang M, Li H, Zhang Y, et al. Transitional basal cells at the squamous-columnar junction generate Barrett’s oesophagus. Nature. 2017;550:529–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Goldenring J, Nam K, Wang T, et al. Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology. 2010;138(2207–10):10.e1.

    Google Scholar 

  111. Weis VG, Goldenring JR. Current understanding of SPEM and its standing in the preneoplastic process. Gastric Cancer. 2009;12:189–97.

    PubMed  Google Scholar 

  112. Goldenring JR, Nam KT, Wang TC, et al. Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology. 2010;138:2207–10.

    PubMed  Google Scholar 

  113. Hayakawa Y, Ariyama H, Stancikova J, et al. Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche. Cancer Cell. 2015;28:800–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Nienhüser H, Kim W, Malagola E, et al. Mist1+ gastric isthmus stem cells are regulated by Wnt5a and expand in response to injury and inflammation in mice. Gut. 2021;70:654–65.

    PubMed  Google Scholar 

  115. Saenz JB, Vargas N, Cho CJ, Mills JC. Regulation of the double-stranded RNA response through ADAR1 licenses metaplastic reprogramming in gastric epithelium. JCI Insight. 2022;7(3):e153511.

    PubMed  PubMed Central  Google Scholar 

  116. Lee JH, Kim S, Han S, et al. p57(Kip2) imposes the reserve stem cell state of gastric chief cells. Cell Stem Cell. 2022;29(826–39): e9.

    Google Scholar 

  117. Burclaff J, Willet SG, Sáenz JB, et al. Proliferation and Differentiation of Gastric Mucous Neck and Chief Cells During Homeostasis and Injury-induced Metaplasia. Gastroenterology. 2020;158:598-609.e5.

    CAS  PubMed  Google Scholar 

  118. Stange DE, Koo BK, Huch M, et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell. 2013;155:357–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Miao ZF, Adkins-Threats M, Burclaff JR, et al. A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation. Cell Stem Cell. 2020;26:910-25.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. He GW, Lin L, DeMartino J, et al. Optimized human intestinal organoid model reveals interleukin-22-dependency of paneth cell formation. Cell Stem Cell. 2022;29:1333-45.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Han S, Fink J, Jörg DJ, et al. Defining the Identity and Dynamics of Adult Gastric Isthmus Stem Cells. Cell Stem Cell. 2019;25:342-56.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Singh H, Ha K, Hornick JL, et al. Hybrid Stomach-Intestinal Chromatin States Underlie Human Barrett’s Metaplasia. Gastroenterology. 2021;161:924-39.e11.

    CAS  PubMed  Google Scholar 

  123. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Debruyne PR, Witek M, Gong L, et al. Bile acids induce ectopic expression of intestinal guanylyl cyclase C Through nuclear factor-kappaB and Cdx2 in human esophageal cells. Gastroenterology. 2006;130:1191–206.

    CAS  PubMed  Google Scholar 

  125. Yu JH, Zheng JB, Qi J, et al. Bile acids promote gastric intestinal metaplasia by upregulating CDX2 and MUC2 expression via the FXR/NF-κB signalling pathway. Int J Oncol. 2019;54:879–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Yue B, Cui R, Zheng R, et al. Essential role of ALKBH5-mediated RNA demethylation modification in bile acid-induced gastric intestinal metaplasia. Mol Ther Nucleic Acids. 2021;26:458–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang N, Chen M, Ni Z, et al. HDAC6/HNF4α loop mediated by miR-1 promotes bile acids-induced gastric intestinal metaplasia. Gastric Cancer. 2021;24:103–16.

    CAS  PubMed  Google Scholar 

  128. Jin D, Huang K, Xu M, et al. Deoxycholic acid induces gastric intestinal metaplasia by activating STAT3 signaling and disturbing gastric bile acids metabolism and microbiota. Gut Microbes. 2022;14:2120744.

    PubMed  PubMed Central  Google Scholar 

  129. Wang N, Wu S, Zhao J, et al. Bile acids increase intestinal marker expression via the FXR/SNAI2/miR-1 axis in the stomach. Cell Oncol (Dordr). 2021;44:1119–31.

    PubMed  Google Scholar 

  130. Napetschnig J, Wu H. Molecular basis of NF-κB signaling. Annu Rev Biophys. 2013;42:443–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Fuchs CD, Trauner M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol. 2022;19:432–50.

    CAS  PubMed  Google Scholar 

  132. Lefebvre P, Cariou B, Lien F, et al. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89:147–91.

    CAS  PubMed  Google Scholar 

  133. Safa A, Bahroudi Z, Shoorei H, et al. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother. 2020;132: 110903.

    CAS  PubMed  Google Scholar 

  134. Singh H, Seruggia D, Madha S, et al. Transcription factor-mediated intestinal metaplasia and the role of a shadow enhancer. Genes Dev. 2022;36:38–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ni Z, Min Y, Han C, et al. TGR5-HNF4α axis contributes to bile acid-induced gastric intestinal metaplasia markers expression. Cell Death Discov. 2020;6:56.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Moore BD, Khurana SS, Huh WJ, et al. Hepatocyte nuclear factor 4α is required for cell differentiation and homeostasis in the adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2016;311:G267–75.

    PubMed  PubMed Central  Google Scholar 

  137. Saito Y, Suzuki H, Tsugawa H, et al. Dysfunctional gastric emptying with down-regulation of muscle-specific microRNAs in Helicobacter pylori-infected mice. Gastroenterology. 2011;140:189–98.

    CAS  PubMed  Google Scholar 

  138. Cao L, Zhu S, Lu H, et al. Helicobacter pylori-induced RASAL2 Through Activation of Nuclear Factor-κB Promotes Gastric Tumorigenesis via β-catenin Signaling Axis. Gastroenterology. 2022;162:1716-31.e17.

    CAS  PubMed  Google Scholar 

  139. Soutto M, Bhat N, Khalafi S, et al. NF-kB-dependent activation of STAT3 by H. pylori is suppressed by TFF1. Cancer Cell Int. 2021;21:444.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Todisco A. Regulation of Gastric Metaplasia, Dysplasia, and Neoplasia by Bone Morphogenetic Protein Signaling. Cell Mol Gastroenterol Hepatol. 2017;3:339–47.

    PubMed  PubMed Central  Google Scholar 

  141. Barros R, Pereira B, Duluc I, et al. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J Pathol. 2008;215:411–20.

    CAS  PubMed  Google Scholar 

  142. Camilo V, Barros R, Sousa S, et al. Helicobacter pylori and the BMP pathway regulate CDX2 and SOX2 expression in gastric cells. Carcinogenesis. 2012;33:1985–92.

    CAS  PubMed  Google Scholar 

  143. Chen HY, Hu Y, Xu XB, et al. Upregulation of oncogene Activin A receptor type I by Helicobacter pylori infection promotes gastric intestinal metaplasia via regulating CDX2. Helicobacter. 2021;26: e12849.

    CAS  PubMed  Google Scholar 

  144. Bleuming SA, Kodach LL, Garcia Leon MJ, et al. Altered bone morphogenetic protein signalling in the Helicobacter pylori-infected stomach. J Pathol. 2006;209:190–7.

    CAS  PubMed  Google Scholar 

  145. Kapalczynska M, Lin M, Maertzdorf J, et al. BMP feed-forward loop promotes terminal differentiation in gastric glands and is interrupted by H pylori-driven inflammation. Nat Commun. 2022;13:1577.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Osaki LH, Bockerstett KA, Wong CF, et al. Interferon-γ directly induces gastric epithelial cell death and is required for progression to metaplasia. J Pathol. 2019;247:513–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang Y, Que J. BMP Signaling in Development, Stem Cells, and Diseases of the Gastrointestinal Tract. Annu Rev Physiol. 2020;82:251–73.

    CAS  PubMed  Google Scholar 

  148. Petersen CP, Meyer AR, De Salvo C, et al. A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach. Gut. 2018;67:805–17.

    CAS  PubMed  Google Scholar 

  149. Buzzelli JN, Chalinor HV, Pavlic DI, et al. IL33 Is a Stomach Alarmin That Initiates a Skewed Th2 Response to Injury and Infection. Cell Mol Gastroenterol Hepatol. 2015;1:203-21.e3.

    PubMed  PubMed Central  Google Scholar 

  150. Eissmann MF, Dijkstra C, Jarnicki A, et al. IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat Commun. 2019;10:2735.

    PubMed  PubMed Central  Google Scholar 

  151. Meyer AR, Engevik AC, Madorsky T, et al. Group 2 Innate Lymphoid Cells Coordinate Damage Response in the Stomach. Gastroenterology. 2020;159:2077-91.e8.

    CAS  PubMed  Google Scholar 

  152. Noto CN, Hoft SG, Bockerstett KA, et al. IL13 Acts Directly on Gastric Epithelial Cells to Promote Metaplasia Development During Chronic Gastritis. Cell Mol Gastroenterol Hepatol. 2022;13:623–42.

    CAS  PubMed  Google Scholar 

  153. Busada JT, Peterson KN, Khadka S, et al. Glucocorticoids and Androgens Protect From Gastric Metaplasia by Suppressing Group 2 Innate Lymphoid Cell Activation. Gastroenterology. 2021;161:637-52.e4.

    CAS  PubMed  Google Scholar 

  154. Lindemans CA, Calafiore M, Mertelsmann AM, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Zheng Y, Valdez PA, Danilenko DM, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 2008;14:282–9.

    CAS  PubMed  Google Scholar 

  156. Bielecki P, Riesenfeld SJ, Hütter JC, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Vivier E, Artis D, Colonna M, et al. Innate Lymphoid Cells: 10 Years On. Cell. 2018;174:1054–66.

    CAS  PubMed  Google Scholar 

  158. Talbot J, Hahn P, Kroehling L, et al. Feeding-dependent VIP neuron-ILC3 circuit regulates the intestinal barrier. Nature. 2020;579:575–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Peng V, Xing X, Bando JK, et al. Whole-genome profiling of DNA methylation and hydroxymethylation identifies distinct regulatory programs among innate lymphocytes. Nat Immunol. 2022;23:619–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Horita N, Keeley TM, Hibdon ES, et al. Delta-like 1-Expressing Cells at the Gland Base Promote Proliferation of Gastric Antral Stem Cells in Mouse. Cell Mol Gastroenterol Hepatol. 2022;13:275–87.

    CAS  PubMed  Google Scholar 

  161. Murakami K, Terakado Y, Saito K, et al. A genome-scale CRISPR screen reveals factors regulating Wnt-dependent renewal of mouse gastric epithelial cells. Proc Natl Acad Sci USA. 2021;118(4):e2016806118.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Chang HR, Nam S, Kook MC, et al. HNF4α is a therapeutic target that links AMPK to WNT signalling in early-stage gastric cancer. Gut. 2016;65:19–32.

    CAS  PubMed  Google Scholar 

  163. Kunze B, Wein F, Fang HY, et al. Notch Signaling Mediates Differentiation in Barrett’s Esophagus and Promotes Progression to Adenocarcinoma. Gastroenterology. 2020;159:575–90.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the following support: ZNW by National Key Research and Development Program of China (No. 2022YFA1105300), National Natural Science Foundation of China (No.81961128026, No. U1908207), Overseas training project of Liaoning general higher education (No.2019GJWYB022); JCM by NIH National Cancer Institute R01CA246208; ZFM by National Natural Science Foundation of China (No.82072724), Department of Education of Liaoning Province (QNZR2020004, 2021-YQ-07); SJX by National Natural Science Foundation of China (No.82102686), and Joint Fund for the Cross-Disciplinary in Medicine and Engineering of Science and Technology Program Projects of Liaoning Province (No. 2021-YGJC-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Ning Wang or Zhi-Feng Miao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, QY., Pang, MJ., Hu, XH. et al. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 59, 285–301 (2024). https://doi.org/10.1007/s00535-023-02073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-023-02073-9

Keywords

Navigation