Skip to main content

Advertisement

Log in

VE-cadherin Regulates Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia Sensitivity to Apoptosis

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

The mechanisms by which the bone marrow microenvironment regulates tumor cell survival are diverse. This study describes the novel observation that in addition to Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) cell lines, primary patient cells also express Hypoxia Inducible Factor-2α (HIF-2α) and Vascular Endothelial Cadherin (VE-cadherin), which are regulated by Abl kinase. Tumor expression of the classical endothelial protein, VE-cadherin, has been associated with aggressive phenotype and poor prognosis in other models, but has not been investigated in hematopoietic malignancies. Targeted knockdown of VE-cadherin rendered Ph+ ALL cells more susceptible to chemotherapy, even in the presence of bone marrow stromal cell (BMSC) derived survival cues. Pre-treatment of Ph+ ALL cells with ADH100191, a VE-cadherin antagonist, resulted in increased apoptosis during in vitro chemotherapy exposure. Consistent with a role for VE-cadherin in modulation of leukemia cell viability, lentiviral-mediated expression of VE-cadherin in Ph− ALL cells resulted in increased resistance to treatment-induced apoptosis. These observations suggest a novel role for VE-cadherin in modulation of chemoresistance in Ph+ ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carroll WL, Bhojwani D, Min DJ et al (2003) Pediatric acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 102–131

  2. Pieters R, Carroll WL (2008) Biology and treatment of acute lymphoblastic leukemia. Pediatr Clin North Am 55:1–20, ix

    Article  PubMed  Google Scholar 

  3. Hoelzer D (1993) Acute lymphoblastic leukemia—progress in children, less in adults. N Engl J Med 329:1343–1344

    Article  CAS  PubMed  Google Scholar 

  4. Faderl S, Kantarjian HM, Thomas DA et al (2000) Outcome of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Leuk Lymphoma 36:263–273

    Article  CAS  PubMed  Google Scholar 

  5. Radich JP (2001) Philadelphia chromosome-positive acute lymphocytic leukemia. Hematol Oncol Clin North Am 15:21–36

    Article  CAS  PubMed  Google Scholar 

  6. Bailey LC, Lange BJ, Rheingold SR, Bunin NJ (2008) Bone-marrow relapse in paediatric acute lymphoblastic leukaemia. Lancet Oncol 9:873–883

    Article  PubMed  Google Scholar 

  7. Pui CH, Howard SC (2008) Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol 9:257–268

    Article  PubMed  Google Scholar 

  8. Li S, Li D (2007) Stem cell and kinase activity-independent pathway in resistance of leukaemia to BCR-ABL kinase inhibitors. J Cell Mol Med 11:1251–1262

    Article  CAS  PubMed  Google Scholar 

  9. Jones D, Thomas D, Yin CC et al (2008) Kinase domain point mutations in Philadelphia chromosome-positive acute lymphoblastic leukemia emerge after therapy with BCR-ABL kinase inhibitors. Cancer 113:985–994

    Article  CAS  PubMed  Google Scholar 

  10. Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14:2519–2526

    Article  CAS  PubMed  Google Scholar 

  11. Mudry RE, Fortney JE, York T, Hall BM, Gibson LF (2000) Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood 96:1926–1932

    CAS  PubMed  Google Scholar 

  12. Wang L, Fortney JE, Gibson LF (2004) Stromal cell protection of B-lineage acute lymphoblastic leukemic cells during chemotherapy requires active Akt. Leuk Res 28:733–742

    Article  PubMed  CAS  Google Scholar 

  13. Hall BM, Fortney JE, Taylor L et al (2004) Stromal cells expressing elevated VCAM-1 enhance survival of B lineage tumor cells. Cancer Lett 207:229–239

    Article  CAS  PubMed  Google Scholar 

  14. Sethi T, Rintoul RC, Moore SM et al (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5:662–668

    Article  CAS  PubMed  Google Scholar 

  15. Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS (2000) Adhesion to fibronectin via beta1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 19:4319–4327

    Article  CAS  PubMed  Google Scholar 

  16. Aoudjit F, Vuori K (2001) Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene 20:4995–5004

    Article  CAS  PubMed  Google Scholar 

  17. Shain KH, Yarde DN, Meads MB et al (2009) Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 69:1009–1015

    Article  CAS  PubMed  Google Scholar 

  18. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D (2007) Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 117:1049–1057

    Article  CAS  PubMed  Google Scholar 

  19. Nishigaki H, Ito C, Manabe A et al (1997) Prevalence and growth characteristics of malignant stem cells in B-lineage acute lymphoblastic leukemia. Blood 89:3735–3744

    CAS  PubMed  Google Scholar 

  20. Wang L, O’Leary H, Fortney J, Gibson LF (2007) Ph+/VE-cadherin+ identifies a stem cell like population of acute lymphoblastic leukemia sustained by bone marrow niche cells. Blood 110:3334–3344

    Article  CAS  PubMed  Google Scholar 

  21. Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Molecular plasticity of human melanoma cells. Oncogene 22:3070–3075

    Article  CAS  PubMed  Google Scholar 

  22. van der Schaft DW, Hillen F, Pauwels P et al (2005) Tumor cell plasticity in Ewing sarcoma, an alternative circulatory system stimulated by hypoxia. Cancer Res 65:11520–11528

    Article  PubMed  CAS  Google Scholar 

  23. Maynard MA, Ohh M (2007) The role of hypoxia-inducible factors in cancer. Cell Mol Life Sci 64:2170–2180

    Article  CAS  PubMed  Google Scholar 

  24. Akeno N, Robins J, Zhang M, Czyzyk-Krzeska MF, Clemens TL (2002) Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha. Endocrinology 143:420–425

    Article  CAS  PubMed  Google Scholar 

  25. Conrad PW, Freeman TL, Beitner-Johnson D, Millhorn DE (1999) EPAS1 trans-activation during hypoxia requires p42/p44 MAPK. J Biol Chem 274:33709–33713

    Article  CAS  PubMed  Google Scholar 

  26. Qing G, Simon MC (2009) Hypoxia inducible factor-2alpha: a critical mediator of aggressive tumor phenotypes. Curr Opin Genet Dev 19:60–66

    Article  CAS  PubMed  Google Scholar 

  27. Le Bras A, Lionneton F, Mattot V et al (2007) HIF-2alpha specifically activates the VE-cadherin promoter independently of hypoxia and in synergy with Ets-1 through two essential ETS-binding sites. Oncogene 26:7480–7489

    Article  PubMed  CAS  Google Scholar 

  28. Ben-Shoshan J, Schwartz S, Luboshits G et al (2008) Constitutive expression of HIF-1alpha and HIF-2alpha in bone marrow stromal cells differentially promotes their proangiogenic properties. Stem Cells 26:2634–2643

    Article  CAS  PubMed  Google Scholar 

  29. Jones A, Fujiyama C, Blanche C et al (2001) Relation of vascular endothelial growth factor production to expression and regulation of hypoxia-inducible factor-1 alpha and hypoxia-inducible factor-2 alpha in human bladder tumors and cell lines. Clin Cancer Res 7:1263–1272

    CAS  PubMed  Google Scholar 

  30. Holmquist-Mengelbier L, Fredlund E, Lofstedt T et al (2006) Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10:413–423

    Article  CAS  PubMed  Google Scholar 

  31. Raval RR, Lau KW, Tran MG et al (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25:5675–5686

    Article  CAS  PubMed  Google Scholar 

  32. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90:8033–8037

    Article  CAS  PubMed  Google Scholar 

  33. Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci USA 98:8018–8023

    Article  CAS  PubMed  Google Scholar 

  34. Smith ME, Brown JI, Fisher C (1998) Epithelioid sarcoma: presence of vascular-endothelial cadherin and lack of epithelial cadherin. Histopathology 33:425–431

    Article  CAS  PubMed  Google Scholar 

  35. Labelle M, Schnittler HJ, Aust DE et al (2008) Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor beta signaling. Cancer Res 68:1388–1397

    Article  CAS  PubMed  Google Scholar 

  36. Vrekoussis T, Stathopoulos EN, De Giorgi U et al (2006) Modulation of vascular endothelium by imatinib: a study on the EA.hy 926 endothelial cell line. J Chemother 18:56–65

    CAS  PubMed  Google Scholar 

  37. Atfi A, Abecassis L, Bourgeade MF (2005) Bcr-Abl activates the AKT/Fox O3 signalling pathway to restrict transforming growth factor-beta-mediated cytostatic signals. EMBO Rep 6:985–991

    Article  CAS  PubMed  Google Scholar 

  38. Cortez D, Reuther G, Pendergast AM (1997) The Bcr-Abl tyrosine kinase activates mitogenic signaling pathways and stimulates G1-to-S phase transition in hematopoietic cells. Oncogene 15:2333–2342

    Article  CAS  PubMed  Google Scholar 

  39. Tabe Y, Jin L, Tsutsumi-Ishii Y et al (2007) Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. Cancer Res 67:684–694

    Article  CAS  PubMed  Google Scholar 

  40. Coluccia AM, Vacca A, Dunach M et al (2007) Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J 26:1456–1466

    Article  CAS  PubMed  Google Scholar 

  41. Kim I, Yilmaz OH, Morrison SJ (2005) CD144 (VE-cadherin) is transiently expressed by fetal liver hematopoietic stem cells. Blood 106:903–905

    Article  CAS  PubMed  Google Scholar 

  42. Koga H, Sugiyama S, Kugiyama K et al (2005) Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 45:1622–1630

    Article  CAS  PubMed  Google Scholar 

  43. Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–421

    Article  CAS  PubMed  Google Scholar 

  44. Seftor EA, Meltzer PS, Schatteman GC et al (2002) Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncol Hematol 44:17–27

    Article  PubMed  Google Scholar 

  45. Zhou Y, Fisher SJ, Janatpour M et al (1997) Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest 99:2139–2151

    Article  CAS  PubMed  Google Scholar 

  46. Parker BS, Argani P, Cook BP et al (2004) Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res 64:7857–7866

    Article  CAS  PubMed  Google Scholar 

  47. Shih SC, Robinson GS, Perruzzi CA et al (2002) Molecular profiling of angiogenesis markers. Am J Pathol 161:35–41

    CAS  PubMed  Google Scholar 

  48. Weis S, Cui J, Barnes L, Cheresh D (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167:223–229

    Article  CAS  PubMed  Google Scholar 

  49. Voura EB, Sandig M, Siu CH (1998) Cell–cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 43:265–275

    Article  CAS  PubMed  Google Scholar 

  50. Rudini N, Felici A, Giampietro C et al (2008) VE-cadherin is a critical endothelial regulator of TGF-beta signalling. EMBO J 27:993–1004

    Article  CAS  PubMed  Google Scholar 

  51. Lofstedt T, Fredlund E, Holmquist-Mengelbier L et al (2007) Hypoxia inducible factor-2alpha in cancer. Cell Cycle 6:919–926

    PubMed  Google Scholar 

  52. Covello KL, Kehler J, Yu H et al (2006) HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570

    Article  CAS  PubMed  Google Scholar 

  53. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104:5431–5436

    Article  CAS  PubMed  Google Scholar 

  54. Hu CJ, Sataur A, Wang L, Chen H, Simon MC (2007) The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 18:4528–4542

    Article  CAS  PubMed  Google Scholar 

  55. Vincent L, Kermani P, Young LM et al (2005) Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest 115:2992–3006

    Article  CAS  PubMed  Google Scholar 

  56. Petit I, Karajannis MA, Vincent L et al (2008) The microtubule-targeting agent CA4P regresses leukemic xenografts by disrupting interaction with vascular cells and mitochondrial-dependent cell death. Blood 111:1951–1961

    Article  CAS  PubMed  Google Scholar 

  57. Hu Y, Chen Y, Douglas L, Li S (2009) Beta-catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 23:109–116

    Article  CAS  PubMed  Google Scholar 

  58. Abrahamsson AE, Geron I, Gotlib J et al (2009) Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA 106:3925–3929

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by NIH RO1HL056888 (LFG), NIH RO1CA134573 (LFG), and NIH P20 RR016440 (LFG). Image acquisition and data analysis were completed in the WVU Microscope Imaging Facility. Flow cytometry experiments were performed in the West Virginia University Flow Cytometry Core Facility, which is supported in part by NIH grants P20 RR106440 and RR020866. Immunohistochemical analysis was performed by the Pathology Core Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura F. Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Leary, H., Akers, S.M., Piktel, D. et al. VE-cadherin Regulates Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia Sensitivity to Apoptosis. Cancer Microenvironment 3, 67–81 (2010). https://doi.org/10.1007/s12307-010-0035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-010-0035-6

Keywords

Navigation