Skip to main content
Log in

On the Origin of Language

A Bridge Between Biolinguistics and Biosemiotics

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Thomas Sebeok and Noam Chomsky are the acknowledged founding fathers of two research fields which are known respectively as Biosemiotics and Biolinguistics and which have been developed in parallel during the past 50 years. Both fields claim that language has biological roots and must be studied as a natural phenomenon, thus bringing to an end the old divide between nature and culture. In addition to this common goal, there are many other important similarities between them. Their definitions of language, for example, have much in common, despite the use of different terminologies. They both regard language as a faculty, or a modelling system, that appeared rapidly in the history of life and probably evolved as an exaptation from previous animal systems. Both accept that the fundamental characteristic of language is recursion, the ability to generate an unlimited number of structures from a finite set of elements (the property of ‘discrete infinity’). Both accept that human beings are born with a predisposition to acquire language in a few years and without apparent efforts (the innate component of language). In addition to similarities, however, there are also substantial differences between the two fields, and it is an historical fact that Sebeok and Chomsky made no attempt at resolving them. Biosemiotics and Biolinguistics have become two separate disciplines, and yet in the case of language they are studying the same phenomenon, so it should be possible to bring them together. Here it is shown that this is indeed the case. A convergence of the two fields does require a few basic readjustments in each of them, but leads to a unified framework that keeps the best of both disciplines and is in agreement with the experimental evidence. What is particularly important is that such a framework suggests immediately a new approach to the origin of language. More precisely, it suggests that the brain wiring processes that take place in all phases of human ontogenesis (embryonic, foetal, infant and child development) are based on organic codes, and it is the step-by-step appearance of these brain-wiring codes, in a condition that is referred to as cerebra bifida, that holds the key to the origin of language.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Augustyn, P. (2009). Uexküll, peirce, and other affinities between biosemiotics and biolinguistics. Biosemiotics, 2, 1–17.

    Article  Google Scholar 

  • Barbieri, M. (1981). The ribotype theory on the origin of life. Journal of Theoretical Biology, 91, 545–601.

    Article  CAS  PubMed  Google Scholar 

  • Barbieri, M. (1985). The semantic theory of evolution. London: Harwood Academic.

    Google Scholar 

  • Barbieri, M. (1998). The organic codes. The basic mechanism of macroevolution. Rivista di Biologia-Biology Forum, 91, 481–514.

    CAS  Google Scholar 

  • Barbieri, M. (2003). The organic codes. An introduction to semantic biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Barbieri, M. (2006). Life and semiosis: the real nature of information and meaning. Semiotica, 158(1/4), 233–254.

    Article  Google Scholar 

  • Barbieri, M. (2008). Biosemiotics: a new understanding of life. Die Naturwissenschaften, 95, 577–599.

    Article  CAS  PubMed  Google Scholar 

  • Bever, T., & Montalbetti, M. (2002). Noam’s Ark. Science, 298, 1565–1566.

    Article  CAS  PubMed  Google Scholar 

  • Bickerton, D. (1981). The roots of language. Ann Arbour: Karoma.

    Google Scholar 

  • Bolk, L. (1926). Das Problem der Menschwerdung. Jena: Gustav Fischer.

    Google Scholar 

  • Changeaux, J.-P. (1983). L’Homme Neuronal. Paris: Libraire Arthème Fayard.

    Google Scholar 

  • Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.

    Google Scholar 

  • Chomsky, N. (1959). Review of ‘verbal behavior’ by B.F. Skinner. Language, 35(1), 26–58.

    Article  Google Scholar 

  • Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge: MIT.

    Google Scholar 

  • Chomsky, N. (1975). The logical structure of linguistic theory. Chicago: University of Chicago Press.

    Google Scholar 

  • Chomsky, N. (1995). The minimalist program. Cambridge: MIT.

    Google Scholar 

  • Chomsky, N. (2005). Three factors in language design. Linguistic Inquiry, 36, 1–22.

    Article  Google Scholar 

  • Chomsky, N. (2006). Biolinguistic explorations: design, development, evolution. International Journal of Philosophical Studies, 15, 1–21.

    Article  Google Scholar 

  • Cowley, S. J. (2007). How human infants deal with symbol grounding. Interaction Studies, 8(1), 83–104.

    Article  Google Scholar 

  • Deacon, T. W. (1997). The symbolic species: The co-evolution of language and the brain. New York: Norton.

    Google Scholar 

  • DeHaan, R. L. (1959). Cardia bifida and the development of pacemaker function in the early chicken heart. Developmental Biology, 1, 586–602.

    Article  Google Scholar 

  • Edelman, G. M. (1987). Neural darwinism. The theory of neuronal group selection. New York: Basic Books.

    Google Scholar 

  • Gabius, H.-J. (2000). Biological information transfer beyond the genetic code: the sugar code. Die Naturwissenschaften, 87, 108–121.

    Article  CAS  PubMed  Google Scholar 

  • Gabius, H.-J., André, S., Kaltner, H., & Siebert, H.-C. (2002). The sugar code: functional lectinomics. Biochimica et Biophysica Acta, 1572, 165–177.

    CAS  PubMed  Google Scholar 

  • Garstang, W. (1922). The theory of recapitulation. A critical restatement of the biogenetic law. Journal of the Linnean Society of London, Zoology, 35, 81–101.

    Article  Google Scholar 

  • Gilbert, S. F. (2006). Developmental biology (8th ed.). Sunderland: Sinauer.

    Google Scholar 

  • Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge: The Belknap Press of Harvard University Press.

    Google Scholar 

  • Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: what is it, who has it, and how did it evolve? Science, 298, 1569–1579.

    Article  CAS  PubMed  Google Scholar 

  • Jacob, F. (1982). The possible and the actual. New York: Pantheon Books.

    Google Scholar 

  • Jacob, F., & Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3, 318–356.

    Article  CAS  PubMed  Google Scholar 

  • Kollmann, J. (1885). Das Überwintern von europäischen Frosch- und Tritonenlarven und die Umwaldung des mexikanischer Axolot. Verhandlungen der naturforschenden Gesellschaft, Basel., 7, 387–398.

    Google Scholar 

  • Lotman, J. (1991). Universe of the mind: A semiotic theory of culture. Bloomington: Indiana University Press.

    Google Scholar 

  • Maslon, L. (1972). Wolf children and the problem of human nature. New York: Monthly Review.

    Google Scholar 

  • Peirce, C. S. (1906). The basis of pragmaticism. In C. Hartshorne & P. Weiss (Eds.), The collected papers of Charles Sanders Peirce (Vol. I–VI, pp. 1931–1935). Cambridge: Harvard University Press.

    Google Scholar 

  • Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.

    Book  Google Scholar 

  • Piaget, J. (1960). The child’s conception of physical causality. Paterson: Littlefield & Co.

    Google Scholar 

  • Portmann, A. (1941). Die Tragzeiten der Primaten und die Dauer der Schwangerschaft beim Menschen: ein Problem der vergleichen Biologie. Revue Suisse de Zoologie, 48, 511–518.

    Google Scholar 

  • Portmann, A. (1945). Die Ontogenese des Menschen als Problem der Evolutionsforschung. Verh Schweiz Naturf Ges, 125, 44–53.

    Google Scholar 

  • Posner, R., Robering, K., & Sebeok, T. A. (1997). Semiotik/semiotics: A handbook on the sign-theoretical foundations of nature and culture (Vol. 1, p. 4). Berlin: Walter de Gruyter.

    Google Scholar 

  • Sebeok, T. A. (1963). Communication among social bees; porpoises and sonar; man and dolphin. Language, 39, 448–466.

    Article  Google Scholar 

  • Sebeok, T. A. (1972). Perspectives in zoosemiotics. The Hague: Mouton.

    Google Scholar 

  • Sebeok, T. A. (1979). The sign and its masters. Austin: University of Texas Press.

    Google Scholar 

  • Sebeok, T. A. (1988). I think I am a verb: More contributions to the Doctrine of Signs. New York: Plenum.

    Google Scholar 

  • Sebeok, T. A. (1991). A sign is just a sign. Bloomington: Indiana University Press.

    Google Scholar 

  • Sebeok, T. A. (2001). Biosemiotics: Its roots, proliferation, and prospects. In K. Kull (Ed.), Jakob von Uexküll: A Paradigm for Biology and Semiotics. Semiotica, 134(1/4): 61–78.

  • Sebeok, T. A., & Danesi, M. (2000). The forms of meaning: Modeling systems theory and semiotic analysis. Berlin: Mouton de Gruyter.

    Google Scholar 

  • Sebeok, T. A., & Umiker-Sebeok, J. (Eds.). (1992). Biosemiotics: The semiotic web. Berlin: Mouton de Gruyter.

    Google Scholar 

  • Shattuck, R. (1981). The forbidden experiment: The story of the wild boy of Averyron. New York: Washington Square.

    Google Scholar 

  • Strahl, B. D., & Allis, D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.

    Article  CAS  PubMed  Google Scholar 

  • Tomkins, M. G. (1975). The metabolic code. Science, 189, 760–763.

    Article  CAS  PubMed  Google Scholar 

  • Trifonov, E. N. (1987). Translation framing code and frame-monitoring mechanism as suggested by the analysis of mRNA and 16s rRNA nucleotide sequence. Journal of Molecular Biology, 194, 643–652.

    Article  CAS  PubMed  Google Scholar 

  • Trifonov, E. N. (1989). The multiple codes of nucleotide sequences. Bulletin of Mathematical Biology, 51, 417–432.

    CAS  PubMed  Google Scholar 

  • Trifonov, E. N. (1996). Interfering contexts of regulatory sequence elements. Cabios, 12, 423–429.

    CAS  PubMed  Google Scholar 

  • Trifonov, E. N. (1999). Elucidating sequence codes: three codes for evolution. Annals of the New York Academy of Sciences, 870, 330–338.

    Article  CAS  PubMed  Google Scholar 

  • Tudge, C. (2000). The variety of life. A survey and a celebration of all the creatures that have ever lived. Oxford: Oxford University Press.

    Google Scholar 

  • Turner, B. M. (2000). Histone acetylation and an epigenetic code. BioEssay, 22, 836–845.

    Article  CAS  Google Scholar 

  • Turner, B. M. (2002). Cellular memory and the histone code. Cell, 111, 285–291.

    Article  CAS  PubMed  Google Scholar 

  • von Baer, K. E. (1866). De la découverte de larves qui se propagent. Bulletin de l’Académie Impériale des Sciences de St. Petersbourg, 9, 63–137.

    Google Scholar 

  • von Uexküll, J. (1909). Umwelt und Innenwelt der Tiere. Berlin: Julius Springer.

    Google Scholar 

  • Woese, C. R. (1987). Bacterial evolution. Microbiological Reviews, 51, 221–271.

    CAS  PubMed  Google Scholar 

  • Woese, C. R. (2000). Interpreting the universal phylogenetic tree. Proceedings of the National Academy of Sciences of the United States of America, 97, 8392–8396.

    Article  CAS  PubMed  Google Scholar 

  • Woese, C. R. (2002). On the evolution of cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 8742–8747.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am deeply grateful to Noam Chomsky for suggesting various changes in the first draft of this paper and for discussing them at length. I also wish to thank Natalia Abieva, Stefan Artmann, Prisca Augustyn, Gérard Battail, Paul Cobley, John Collier, Stephen Cowley, Almo Farina, Don Favareau, Kleanthes Grohmann, Sungchul Ji, Anton Markoš, Chris Ottolenghi, Stanley Salthe, Liz Stillwaggon-Swan and Morten Tønnessen for their most appropriate notes. The manuscript of this paper has been circulated to 60 members of the Biosemiotic community and I warmly thank all of them for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Barbieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbieri, M. On the Origin of Language. Biosemiotics 3, 201–223 (2010). https://doi.org/10.1007/s12304-010-9088-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-010-9088-7

Keywords

Navigation